scholarly journals Adaptive Inverse Control Based on Kriging Algorithm and Lyapunov Theory of Crawler Electromechanical System

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Guanyu Zhang ◽  
Yitian Wang ◽  
Yiyao Fan ◽  
Chen Chen

The electromechanical system of a crawler is a multi-input, multioutput strongly coupled nonlinear system. In this study, an adaptive inverse control method based on kriging algorithm and Lyapunov theory is proposed to improve control accuracy during adaptive driving. The electromechanical coupling model of the electromechanical system is established on the basis of the dynamic analysis of the crawler. In accordance with the kriging algorithm, the inverse model of the electromechanical system of the crawler is established by offline data. The adaptive travel control law of the crawler is obtained on the basis of Lyapunov theory. Combined with the kriging algorithm, the adaptive driving reverse control method is designed, and the online system is used to update and perfect the inverse system model in real time. Finally, the virtual prototype model of the crawler is established, and the control effect of the adaptive inverse control method is verified by theoretical analysis and virtual prototype simulation.

2014 ◽  
Vol 703 ◽  
pp. 327-330
Author(s):  
Jian Dong Sun ◽  
Yu Xin Sun ◽  
Huang Qiu Zhu ◽  
Xian Xing Liu

The traditional control has good performance in the control of linear systems while has poor performance in the control of nonlinear systems. The bearingless asynchronous motor is a multivariable nonlinear system with high coupling. In this paper, the method of adaptive inverse control is proposed for these reasons. Firstly, the mathematical model of the bearingless asynchronous motor is built, and the possibility of the existence of the bearingless asynchronous motor system inverse model is explored. Secondly, since the object to be controlled is highly nonlinear and has high variability. In this paper, adaptive inverse fuzzy decoupling control is used to make up the deficiency of traditional adaptive inverse control. Finally, the Matlab simulation model is established. The simulation results show that the control method has good dynamic and static performance.


2012 ◽  
Vol 591-593 ◽  
pp. 1200-1203
Author(s):  
Zhong Liao ◽  
Bin Yuan Ye

Due to the nonlinear, time-variable and non-minimum phase character of hydro electric unit system integrated with water, motor and power, a new adaptive inverse control method of hydro electric unit based on the function approximation ability of the wavelet analysis and the learning characteristic of neural network is presented. The algorithm and formulas and method of adaptive inverse control is studied. It approximates the model and its inversion of hydro electric unit by wavelet neural networks(WNN), and then through constructing an aim function of broad sense, which is effective to the nonlinear non-minimum phase system. Theory and simulation to for hydro electric unit system demonstrate that the control strategy can more effective improve the dynamic and stationary performance than those based on neural networks. It gives a new approach in control for hydro electric unit system besides offer a beneficial reference to the control of non-minimum phase systems.


2014 ◽  
Vol 494-495 ◽  
pp. 1825-1828
Author(s):  
Wan Zhao Wang ◽  
Jie Wang

The variable speed wind turbine generator exhibits serious nonlinearity, uncertainty and difficulty accurate modeling, conventional PID controller can't achieve ideal control effect. In this paper, an adaptive inverse control scheme based on neural network identification technology is proposed to solve the above problem. The scheme firstly uses online identification of one DRNN to obtain the Jacobian information of plant. On this basis, another DRNN identifies the inverse plant model which constitutes adaptive inverse control system as controller. The simulation results verify that the adaptive inverse control scheme has excellent adaptability and robustness, which can make the actual rotational speed of wind turbine rapidly track the set point to maintain the best tip-speed ratio in order to get maximum wind energy capture in the random wind conditions.


Author(s):  
Dawei Gu ◽  
Juqian Zhang ◽  
Bangchun Wen ◽  
Xueliang Zhang ◽  
Yunshan Liu

This paper aims at theoretically and experimentally investigating the controlled synchronization of four co-rotating coupled exciters in a vibrating system driven by induction motors. Using the Lagrange's equations, the motion equations of the vibrating system are derived. Combining the dynamic model of an induction motor with the dynamic model of a vibrating system, an electromechanical coupling model is developed. By virtue of the average method of modified small parameters and the Routh–Hurwitz principle, the self-synchronization criterion for four exciters and the stability criterion of synchronous states are obtained. Based on the numerical results, the stable inphase motion of four exciters fails to be implemented by means of self-synchronization, and as a result, the desired motion type of the vibrating system cannot be realized. Hence, the controlled synchronization is introduced into the vibrating system. Owing to the coupling characteristics of the vibrating system, the control challenge can be turned into a synchronization control problem between four exciters driven by induction motors. To perform the synchronized motion of zero phase differences between four exciters, sliding mode control algorithm and field-oriented control method on four induction motors are applied to develop the controlled synchronization scheme by adopting the master–slave control strategy. The stability of the closed loop system is proved by Lyapunov theorem. Experiments on a corresponding controlled synchronization bedstand are performed to examine the effectiveness of the developed controllers, including a comparison with self-synchronization method. Additionally, experimental results show the robustness of the proposed control scheme against the influence of parameter perturbations and external disturbances. The controlled synchronization method provides a novel approach to the development of vibrating machines.


2013 ◽  
Vol 765-767 ◽  
pp. 1979-1983
Author(s):  
Hao Li ◽  
Long Lei Dong ◽  
Wen Zhe Zhao

In this paper, study of adaptive inverse controller based on nonlinear multi-degree-of-freedom (NLMDF) algorithm has been carried out. A vibration control system with TMS320F2812 as the hardware platform has been developed, which can realize waveform reproduction and spectrum control. An improved least mean square algorithm-NLMDF has been introduced to design the filter parameters in the adaptive inverse control and simulations have been carried out in Matlab software environment. Accordance with the requirements of the adaptive inverse control method, hardware platform of the vibration control system based on dual-Digital Signal Processor (DSP) architecture, has been designed; through abstraction of the driver layer, system layer and application layer of the vibration control system , software platform has been developed. The experiment results show that functionality and performance indicators of the system have reached the design requirements.


2014 ◽  
Vol 1039 ◽  
pp. 345-352
Author(s):  
Guang Hua Fu ◽  
Xue Mei Liu ◽  
Jin Yuan

Tree-pruning robot can appear tilt problem in the climbing process because of the trunk shape and mechanical mechanism of its climbing legs. According to the robot's tilt problem, this paper guarantees the level of tree-pruning robot using the method of controlling the motor speed at different locations. This paper establishes a three-dimensional virtual prototype model about tree-pruning robot in ADAMS software, design controller in Matlab software, and conduct ADAMS-Matlab co-simulation. The simulation results and experimental prototypes show that the designed control method can effectively overcome the tilt problem in the crawling process.


Sign in / Sign up

Export Citation Format

Share Document