scholarly journals Pattern-Identified Online Task Scheduling in Multitier Edge Computing for Industrial IoT Services

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Nhu-Ngoc Dao ◽  
Duc-Nghia Vu ◽  
Yunseong Lee ◽  
Sungrae Cho ◽  
Chihyun Cho ◽  
...  

In smart manufacturing, production machinery and auxiliary devices, referred to as industrial Internet of things (IIoT), are connected to a unified networking infrastructure for management and command deliveries in a precise production process. However, providing autonomous, reliable, and real-time offloaded services for such a production is an open challenge since these IIoT devices are assumed lightweight embedded platforms with limited computing performance. In this paper, we propose a pattern-identified online task scheduling (PIOTS) mechanism for the networking infrastructure, where multitier edge computing is provided, in order to handle the offloaded tasks in real time. First, historical IIoT task patterns in every timeslot are used to train a self-organizing map (SOM), which represents the features of the task patterns within defined dimensions. Consequently, offline task scheduling among edge computing-enabled entities is performed on the set of all SOM neurons using the Hungarian method to determine the expected optimal task assignments. In real-time context, whenever a task arrives at the infrastructure, the expected optimal assignment for the task is scheduled to the appropriate edge computing-enabled entity. Numerical simulation results show that the proposed PIOTS mechanism overcomes existing solutions in terms of computation performance and service capability.

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Zhenzhong Zhang ◽  
Wei Sun ◽  
Yanliang Yu

With the vigorous development of the Internet of Things, the Internet, cloud computing, and mobile terminals, edge computing has emerged as a new type of Internet of Things technology, which is one of the important components of the Industrial Internet of Things. In the face of large-scale data processing and calculations, traditional cloud computing is facing tremendous pressure, and the demand for new low-latency computing technologies is imminent. As a supplementary expansion of cloud computing technology, mobile edge computing will sink the computing power from the previous cloud to a network edge node. Through the mutual cooperation between computing nodes, the number of nodes that can be calculated is more, the types are more comprehensive, and the computing range is even greater. Broadly, it makes up for the shortcomings of cloud computing technology. Although edge computing technology has many advantages and has certain research and application results, how to allocate a large number of computing tasks and computing resources to computing nodes and how to schedule computing tasks at edge nodes are still challenges for edge computing. In view of the problems encountered by edge computing technology in resource allocation and task scheduling, this paper designs a dynamic task scheduling strategy for edge computing with delay-aware characteristics, which realizes the reasonable utilization of computing resources and is required for edge computing systems. This paper proposes a resource allocation scheme combined with the simulated annealing algorithm, which minimizes the overall performance loss of the system while keeping the system low delay. Finally, it is verified through experiments that the task scheduling and resource allocation methods proposed in this paper can significantly reduce the response delay of the application.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5023
Author(s):  
Christos Koulamas ◽  
Mihai T. Lazarescu

The Industrial Internet of Things (Industrial IoT—IIoT) is the emerging core backbone construct for the various cyber-physical systems constituting one of the principal dimensions of the 4th Industrial Revolution [...]


2021 ◽  
Vol 17 (7) ◽  
pp. 5010-5011
Author(s):  
Zhaolong Ning ◽  
Edith Ngai ◽  
Ricky Y. K. Kwok ◽  
Mohammad S. Obaidat

Author(s):  
Chia-Shin Yeh ◽  
Shang-Liang Chen ◽  
I-Ching Li

The core concept of smart manufacturing is based on digitization to construct intelligent production and management in the manufacturing process. By digitizing the production process and connecting all levels from product design to service, the purpose of improving manufacturing efficiency, reducing production cost, enhancing product quality, and optimizing user experience can be achieved. To digitize the manufacturing process, IoT technology will have to be introduced into the manufacturing process to collect and analyze process information. However, one of the most important problems in building the industrial IoT (IIoT) environment is that different industrial network protocols are used for different equipment in factories. Therefore, the information in the manufacturing process may not be easily exchanged and obtained. To solve the above problem, a smart factory network architecture based on MQTT (MQ Telemetry Transport), IoT communication protocol, is proposed in this study, to construct a heterogeneous interface communication bridge between the machine tool, embedded device Raspberry Pi, and website. Finally, the system architecture is implemented and imported into the factory, and a smart manufacturing information management system is developed. The edge computing module is set up beside a three-axis machine tool, and a human-machine interface is built for the user controlling and monitoring. Users can also monitor the system through the dynamically updating website at any time and any place. The function of real-time gesture recognition based on image technology is developed and built on the edge computing module. The gesture recognition results can be transmitted to the machine controller through MQTT, and the machine will execute the corresponding action according to different gestures to achieve human-robot collaboration. The MQTT transmission architecture developed here is validated by the given edge computing application. It can serve as the basis for the construction of the IIoT environment, assist the traditional manufacturing industry to prepare for digitization, and accelerate the practice of smart manufacturing.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3715
Author(s):  
Ioan Ungurean ◽  
Nicoleta Cristina Gaitan

In the design and development process of fog computing solutions for the Industrial Internet of Things (IIoT), we need to take into consideration the characteristics of the industrial environment that must be met. These include low latency, predictability, response time, and operating with hard real-time compiling. A starting point may be the reference fog architecture released by the OpenFog Consortium (now part of the Industrial Internet Consortium), but it has a high abstraction level and does not define how to integrate the fieldbuses and devices into the fog system. Therefore, the biggest challenges in the design and implementation of fog solutions for IIoT is the diversity of fieldbuses and devices used in the industrial field and ensuring compliance with all constraints in terms of real-time compiling, low latency, and predictability. Thus, this paper proposes a solution for a fog node that addresses these issues and integrates industrial fieldbuses. For practical implementation, there are specialized systems on chips (SoCs) that provides support for real-time communication with the fieldbuses through specialized coprocessors and peripherals. In this paper, we describe the implementation of the fog node on a system based on Xilinx Zynq UltraScale+ MPSoC ZU3EG A484 SoC.


Work ◽  
2021 ◽  
pp. 1-11
Author(s):  
Duan Pingli ◽  
Bala Anand Muthu ◽  
Seifedine Nimer Kadry

BACKGROUND: The manufacturing industry undergoes a new age, with significant changes taking place on several fronts. Companies devoted to digital transformation take their future plants inspired by the Internet of Things (IoT). The IoT is a worldwide network of interrelated physical devices, which is an essential component of the internet, including sensors, actuators, smart apps, computers, mechanical machines, and people. The effective allocation of the computing resources and the carrier is critical in the industrial internet of Things (IIoT) for smart production systems. Indeed, the existing assignment method in the smart production system cannot guarantee that resources meet the inherently complex and volatile requirements of the user are timely. Many research results on resource allocations in auction formats which have been implemented to consider the demand and real-time supply for smart development resources, but safety privacy and trust estimation issues related to these outcomes are not actively discussed. OBJECTIVES: The paper proposes a Hierarchical Trustful Resource Assignment (HTRA) and Trust Computing Algorithm (TCA) based on Vickrey Clarke-Groves (VGCs) in the computer carriers necessary resources to communicate wirelessly among IIoT devices and gateways, and the allocation of CPU resources for processing information at the CPC. RESULTS: Finally, experimental findings demonstrate that when the IIoT equipment and gateways are valid, the utilities of each participant are improved. CONCLUSION: This is an easy and powerful method to guarantee that intelligent manufacturing components genuinely work for their purposes, which want to integrate each element into a system without interactions with each other.


Sign in / Sign up

Export Citation Format

Share Document