scholarly journals Solution to Propagation of Shock Wave Based on Continuum Hypothesis

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Huanguang Wang ◽  
Qi Yu ◽  
Yao Jing

Based on the continuum hypothesis, problem of compressing wave was studied analytically. By exploring the temperature distribution, the propagation velocity, and the thickness of the transition region, the developing process of compressing wave turning into shock wave was revealed, and the following conclusions were reached: (1) the governing equations of compressing wave can be turned into two autonomous equations, and the phase diagram can be used as an effective tool for the analysis of the compressing wave; (2) the solution of compressing wave was composed of two parts: the inner solution and the outer solution; when Pr=3/4, the analytical inner solution can be obtained; (3) as the disturbance velocity increases, the thickness of compressing wave will decrease, and the propagation velocity of the compressing wave will increase, and the compressing wave will become shock wave when the disturbance velocity is large enough; (4) velocity and temperature across compressing wave change monotonically and continuously, but the entropy generation changing tendency is closely related to Pr; therefore, the inner solution reveals the mechanism of irreversibility happening in compressing waves.

2021 ◽  
Vol 11 (11) ◽  
pp. 4934
Author(s):  
Viola Rossano ◽  
Giuliano De Stefano

Computational fluid dynamics was employed to predict the early stages of the aerodynamic breakup of a cylindrical water column, due to the impact of a traveling plane shock wave. The unsteady Reynolds-averaged Navier–Stokes approach was used to simulate the mean turbulent flow in a virtual shock tube device. The compressible flow governing equations were solved by means of a finite volume-based numerical method, where the volume of fluid technique was employed to track the air–water interface on the fixed numerical mesh. The present computational modeling approach for industrial gas dynamics applications was verified by making a comparison with reference experimental and numerical results for the same flow configuration. The engineering analysis of the shock–column interaction was performed in the shear-stripping regime, where an acceptably accurate prediction of the interface deformation was achieved. Both column flattening and sheet shearing at the column equator were correctly reproduced, along with the water body drift.


Author(s):  
Kyriakos Keremedis ◽  
Eleftherios Tachtsis ◽  
Eliza Wajch

AbstractIn the absence of the axiom of choice, the set-theoretic status of many natural statements about metrizable compact spaces is investigated. Some of the statements are provable in $$\mathbf {ZF}$$ ZF , some are shown to be independent of $$\mathbf {ZF}$$ ZF . For independence results, distinct models of $$\mathbf {ZF}$$ ZF and permutation models of $$\mathbf {ZFA}$$ ZFA with transfer theorems of Pincus are applied. New symmetric models of $$\mathbf {ZF}$$ ZF are constructed in each of which the power set of $$\mathbb {R}$$ R is well-orderable, the Continuum Hypothesis is satisfied but a denumerable family of non-empty finite sets can fail to have a choice function, and a compact metrizable space need not be embeddable into the Tychonoff cube $$[0, 1]^{\mathbb {R}}$$ [ 0 , 1 ] R .


2000 ◽  
Author(s):  
Mehrdad Massoudi ◽  
Tran X. Phuoc

Abstract In this paper we study the flow of granular materials between two horisontal flat plates where the top plate is moving with a constant speed. The constitutive relation used for the stress is based on the continuum model proposed by Rajagopal and Massoudi (1990), where the material parameters are derived using the kinetic theory model proposed by Boyle and Massoudi (1990). The governing equations are non-dimensionalized and the resulting system of non-linear differential equations is solved numerically using finite difference technique.


Sign in / Sign up

Export Citation Format

Share Document