scholarly journals A New Route to Fabricate Multifunctional and Multistage Composite Nanoparticle

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Xin Wang ◽  
Pin Chen ◽  
Xiaohong Hu

The focus of nanoparticle research is on exploring its application in all kinds of field. Among these, multifunctional nanoparticle attracts increasing interest due to its fittest property and adjustable property. Herein, a multifunctional and multistage nanoparticle considering the advantage of both nanogel and pH-responsive property has been designed and synthesized in the research. The composite nanoparticle was obtained by in situ processing and polymerization technique using acetylated β-cyclodextrin and gelatin as materials. Gelatin was first encapsulated into Ac-β-CD nanoparticle in order to investigate optimal fabrication conditions of W/O/W technique. The results showed that the nanoparticle had monodisperse characteristic and coarse spherical morphology, which was influenced by factors such as PVA concentration and water/oil ratio. In further step, two-phase composite nanoparticle could be obtained by combined W/O/W technique and in situ polymerization using optimal preparative parameters of W/O/W technique. Two-phase structure could be confirmed by TEM images and DLS results. Fabrication temperature had no effect on the diameters of composite nanoparticle, but influenced the encapsulated efficiency of nanogel. Finally, composite nanoparticle showed quick pH response property at mild acid medium and no obvious cytotoxicity.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Xin Wang ◽  
Ziyu Gao ◽  
Long Zhang ◽  
Huiming Wang ◽  
Xiaohong Hu

Mild acid response nanocarriers have been intensively attracted interest in the field of drug delivery on the account of the responsive property to abnormal physiological environment as well as the original property to normal physiological environment. However, the drug delivery system lacks capacity of precise localization to abnormal tissue or targeted cells. Therefore, a magnetic and pH-sensitive composite nanoparticle was designed and prepared by double water-in-oil-in-water (W/O/W) emulsion using acetylated β-cyclodextrin (Ac-β-CD) as a dominant material to realize the pH response and Fe3O4 as a component to realize magnetic response. The surface chemical characteristic was characterized by Fourier-transformed infrared spectroscopy (FTIR) using pure Ac-β-CD nanoparticle as a control and exhibits the typical chemical characteristic of Ac-β-CD. Furthermore, the structural information was tracked by X-ray diffraction (XRD) and thermogravimetric analysis (TG). It was found that composite nanoparticle possessed structural characteristic of both Ac-β-CD and Fe3O4. Composite nanoparticle exhibited sphere and two-phase morphology with the diameter of about 200–250 nm depending on their detection method and zeta potential of −12 to −14 mV. More importantly, irreversible pH response property and reversible magnetic responsive properties either in neutral environment or in mild acid environment for the composite nanoparticle were confirmed in the research. Finally, drug loading and release behavior were investigated through preliminary in vitro evaluation.


Cellulose ◽  
2018 ◽  
Vol 26 (3) ◽  
pp. 1825-1839 ◽  
Author(s):  
Fengcai Lin ◽  
Xiangchao Lu ◽  
Zi Wang ◽  
Qilin Lu ◽  
Guanfeng Lin ◽  
...  

2021 ◽  
Vol 166 ◽  
pp. 113495
Author(s):  
Andrey Pereira Acosta ◽  
Kelvin Techera Barbosa ◽  
Sandro Campos Amico ◽  
André Luiz Missio ◽  
Rafael de Avila Delucis ◽  
...  

Author(s):  
Andrey Acosta ◽  
Ezequiel Gallio ◽  
Paula Zanatta ◽  
Henrique Schulz ◽  
Rafael de Avila Delucis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document