Juvenile and Mature Pinewoods Treated by in situ Polymerization with Poly(vinyl acetate)

Author(s):  
Andrey Acosta ◽  
Ezequiel Gallio ◽  
Paula Zanatta ◽  
Henrique Schulz ◽  
Rafael de Avila Delucis ◽  
...  
Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1651 ◽  
Author(s):  
Saisai Huang ◽  
Qiufang Jiang ◽  
Bin Yu ◽  
Yujing Nie ◽  
Zhongqing Ma ◽  
...  

Acetylation and in situ polymerization are two typical chemical modifications that are used to improve the dimensional stability of bamboo. In this work, the combination of chemical modification of vinyl acetate (VA) acetylation and methyl methacrylate (MMA) in situ polymerization of bamboo was employed. Performances of the treated bamboo were evaluated in terms of dimensional stability, wettability, thermal stability, chemical structure, and dynamic mechanical properties. Results show that the performances (dimensional stability, thermal stability, and wettability) of bamboo that was prepared via the combined pretreatment of VA and MMA (VA/MMA-B) were better than those of raw bamboo, VA single-treated bamboo (VA-B), and MMA single-treated bamboo (MMA-B). According to scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analyses, VA and MMA were mainly grafted onto the surface of the cell wall or in the bamboo cell lumen. The antiswelling efficiency and contact angle of VA/MMA-B increased to maximum values of 40.71% and 107.1°, respectively. From thermogravimetric analysis (TG/DTG curves), the highest onset decomposition temperature (277 °C) was observed in VA/MMA-B. From DMA analysis, the storage modulus (E’) of VA/MMA-B increased sharply from 15,057 Pa (untreated bamboo) to 17,909 Pa (single-treated bamboo), and the glass transition temperature was improved from 180 °C (raw bamboo) to 205 °C (single-treated bamboo).


RSC Advances ◽  
2016 ◽  
Vol 6 (22) ◽  
pp. 18308-18318 ◽  
Author(s):  
Chun-fang Zhang ◽  
Guo-liang Wu ◽  
Liang-liang Dong ◽  
Jun Tang ◽  
Yun-xiang Bai ◽  
...  

The addition of hyperbranched polysiloxane (HPSiO) could improve the hydrophobic of the membranes which is helpful to recover EA from water.


1994 ◽  
Vol 195 (1) ◽  
pp. 149-158 ◽  
Author(s):  
Emmanuel Girard-Reydet ◽  
Thanh My Lam ◽  
Jean Pierre Pascault

2021 ◽  
Vol 166 ◽  
pp. 113495
Author(s):  
Andrey Pereira Acosta ◽  
Kelvin Techera Barbosa ◽  
Sandro Campos Amico ◽  
André Luiz Missio ◽  
Rafael de Avila Delucis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document