scholarly journals Integrating “Hard” and “Soft” Infrastructural Resilience Assessment for Water Distribution Systems

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Alessandro Pagano ◽  
Irene Pluchinotta ◽  
Raffaele Giordano ◽  
Umberto Fratino

Cities are highly dynamic systems, whose resilience is affected by the interconnectedness between “hard” and “soft” infrastructures. “Hard infrastructures” are the functional networks with physical elements providing goods or services. “Soft infrastructures” (culture, governance, and social patterns) encompass the social networks, make the hard infrastructures work, and are vital for understanding the consequences of disasters and the effectiveness of emergency management. Although the dynamic interactions between such infrastructures are highly complex in the case of the occurrence of hazardous events, it is fundamental to analyze them. The reliability of hard infrastructures during emergency management contributes to keep alive the social capital, while the community, its networks, and its own resilience influence the service provided by infrastructural systems. Resilience-thinking frameworks overcome the limits of the traditional engineering-oriented approaches, accounting for complexity of socio-technical-organizational networks, bridging the static and dynamic components of disasters across pre- and postevent contexts. The present work develops an integrated approach to operatively assess resilience for the hard and soft infrastructural systems, aiming at modeling the complexity of their interaction by adopting a graph theory-based approach and social network analysis. The developed approach has been experimentally implemented for assessing the integrated resilience of the hard/soft infrastructures during the L’Aquila 2009 earthquake.

2003 ◽  
Vol 3 (1-2) ◽  
pp. 307-312 ◽  
Author(s):  
M. Poulton

The deterioration of water distribution systems and the subsequent need for major rehabilitation has provided researchers with a challenge: to seek new techniques to facilitate decision-making and assist network planners. Consequently, a range of methods have been developed, concerning several key performance indicators. Those with the greatest potential tend to promote a pro-active approach to pipeline rehabilitation, by predicting future performance of individual or groups of pipes. Such an approach is essential if cost-effective solutions are to be found. Prediction models are based on indicators that are perceived to be the most appropriate for measuring and comparing an aspect of performance. The level of “appropriateness” is influenced not only by the availability of data and the ease at which it can be recorded, but also its accuracy and unambiguity. Consequently, indicators such as burst rates are widely used to assess structural performance. Ideally though, a more direct measure of the condition of a pipe could be used, such as its remaining wall thickness. This has previously been largely disregarded, due to the lack of appropriate (non-destructive) measurement technology. However, technological advances are being made to enable the inline monitoring of pipes and determination of deficiencies (particularly corrosion pits in cast iron pipes). This paper illustrates how online condition monitoring of distribution pipelines can be combined with existing prediction models, to facilitate the decision-making process. Integration is achieved through the use of a Geographical Information System (GIS), which greatly enhances representation of spatial and temporal information.


2008 ◽  
Vol 8 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Bambos Charalambous

Water shortage and the future threat posed by changing climatic conditions has intensified the need for the development of appropriate water management approaches, which aim at keeping a balance between water supply and demand. Losses from water distribution systems must be of concern to every water utility, especially in areas of our planet where water is found in very limited quantities. It is therefore imperative that water utilities apply simple and effective methodologies in accounting for water losses from their transmission and distribution systems. The Water Loss Task Force (WLTF) of the International Water Association (IWA) has established a water audit method, which traces water from its source right through the system and derives at the end the revenue and non-revenue component, in other words is a methodology for water accountability and an integrated approach to water loss control. The Water Board of Lemesos, Cyprus recognised at a very early stage the importance and significance of establishing a proper water audit system and has over the years developed its infrastructure in such a way in order to be able to account efficiently and accurately for all water produced. Reduction and control of water loss was achieved through the application of a holistic strategy based on the approach developed by the WLTF of the IWA. Integral part of this approach is the establishment and operation of DMAs.


2017 ◽  
Vol 186 ◽  
pp. 428-435 ◽  
Author(s):  
A. Fiorini Morosini ◽  
O. Caruso ◽  
F. Costanzo ◽  
D. Savic

2002 ◽  
Vol 2 (3) ◽  
pp. 243-250 ◽  
Author(s):  
Y. Jaeger ◽  
V. Gauthier ◽  
M.-C. Besner ◽  
B. Viret ◽  
R. Toulorge ◽  
...  

Understanding the reasons for water quality failures in drinking water distribution systems has become a priority for network managers. The proposed approach provides a unique tool for assessing the consequences of water supply changes and the consequences of distribution system operation and maintenance on the quality of distributed water. Its main benefit is to help the water producer understand the origins of local water quality problems, and consequently to eliminate them from their distribution system.


WRPMD'99 ◽  
1999 ◽  
Author(s):  
P. Costa ◽  
A. Esposito ◽  
C. Gualtieri ◽  
D. Pianese ◽  
G. Pulci Doria ◽  
...  

Author(s):  
Mietek A. Brdys ◽  
Kazimierz Duzinkiewicz ◽  
Michal Grochowski ◽  
Tomasz Rutkowski

Sign in / Sign up

Export Citation Format

Share Document