scholarly journals Holling-Tanner Predator-Prey Model with State-Dependent Feedback Control

2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Jin Yang ◽  
Guangyao Tang ◽  
Sanyi Tang

In this paper, we propose a novel Holling-Tanner model with impulsive control and then provide a detailed qualitative analysis by using theories of impulsive dynamical systems. The Poincaré map is first constructed based on the phase portraits of the model. Then the main properties of the Poincaré map are investigated in detail which play important roles in the proofs of the existence of limit cycles, and it is concluded that the definition domain of the Poincaré map has a complicated shape with discontinuity points under certain conditions. Subsequently, the existence of the boundary order-1 limit cycle is discussed and it is shown that this limit cycle is unstable. Furthermore, the conditions for the existence and stability of an order-1 limit cycle are provided, and the existence of order-k(k≥2) limit cycle is also studied. Moreover, numerical simulations are carried out to substantiate our results. Finally, biological implications related to the mathematical results which are beneficial for successful pest control are addressed in the Conclusions section.

2012 ◽  
Vol 05 (03) ◽  
pp. 1260006 ◽  
Author(s):  
BING LIU ◽  
YE TIAN ◽  
BAOLIN KANG

According to biological and chemical control strategy for pest control, a Holling II functional response predator–prey system concerning state-dependent impulsive control is investigated. We define the successor functions of semi-continuous dynamic system and give an existence theorem of order 1 periodic solution of such a system. By means of sequence convergence rules and qualitative analysis, we successfully get the conditions of existence and attractiveness of order 1 periodic solution. Our results show that our method used in this paper is more efficient and easier than the existing methods to prove the existence and attractiveness of order 1 periodic solution.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Huidong Cheng ◽  
Fang Wang ◽  
Tongqian Zhang

According to the different effects of biological and chemical control, we propose a model for Holling I functional response predator-prey system concerning pest control which adopts different control methods at different thresholds. By using differential equation geometry theory and the method of successor functions, we prove that the existence of order one periodic solution of such system and the attractiveness of the order one periodic solution by sequence convergence rules and qualitative analysis. Numerical simulations are carried out to illustrate the feasibility of our main results which show that our method used in this paper is more efficient and easier than the existing ones for proving the existence of order one periodic solution.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Hunki Baek

A Lotka-Volterra-type predator-prey system with state-dependent feedback control is investigated in both theoretical and numerical ways. Using the Poincaré map and the analogue of the Poincaré criterion, the sufficient conditions for the existence and stability of semitrivial periodic solutions and positive periodic solutions are obtained. In addition, we show that there is no positive periodic solution with period greater than and equal to three under some conditions. The qualitative analysis shows that the positive period-one solution bifurcates from the semitrivial solution through a fold bifurcation. Numerical simulations to substantiate our theoretical results are provided. Also, the bifurcation diagrams of solutions are illustrated by using the Poincaré map, and it is shown that the chaotic solutions take place via a cascade of period-doubling bifurcations.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Huidong Cheng ◽  
Tongqian Zhang ◽  
Fang Wang

According to the integrated pest management strategies, a Holling type I functional response predator-prey system concerning state-dependent impulsive control is investigated. By using differential equation geometry theory and the method of successor functions, we prove the existence of order one periodic solution, and the attractivity of the order one periodic solution by sequence convergence rules and qualitative analysis. Numerical simulations are carried out to illustrate the feasibility of our main results which show that our method used in this paper is more efficient than the existing ones for proving the existence and attractiveness of order one periodic solution.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jingwen Zhu ◽  
Ranchao Wu ◽  
Mengxin Chen

Abstract In this paper, strong Allee effects on the bifurcation of the predator–prey model with ratio-dependent Holling type III response are considered, where the prey in the model is subject to a strong Allee effect. The existence and stability of equilibria and the detailed behavior of possible bifurcations are discussed. Specifically, the existence of saddle-node bifurcation is analyzed by using Sotomayor’s theorem, the direction of Hopf bifurcation is determined, with two bifurcation parameters, the occurrence of Bogdanov–Takens of codimension 2 is showed through calculation of the universal unfolding near the cusp. Comparing with the cases with a weak Allee effect and no Allee effect, the results show that the Allee effect plays a significant role in determining the stability and bifurcation phenomena of the model. It favors the coexistence of the predator and prey, can lead to more complex dynamical behaviors, not only the saddle-node bifurcation but also Bogdanov–Takens bifurcation. Numerical simulations and phase portraits are also given to verify our theoretical analysis.


2018 ◽  
Vol 28 (12) ◽  
pp. 1850147 ◽  
Author(s):  
Sanyi Tang ◽  
Xuewen Tan ◽  
Jin Yang ◽  
Juhua Liang

A planar predator–prey impacting system model with a nonmonotonic functional response function is proposed and analyzed. The existence and stability of a boundary order-1 periodic solution were investigated and the threshold conditions for a transcritical bifurcation and stable switching were obtained, and also the definition and properties of the Poincaré map are discussed. The main results indicate that multiple discontinuous points of the Poincaré map could induce the coexistence of multiple order-1 periodic solutions. Numerical analyses reveal the complex dynamics of the model including periodic adding and halving bifurcations, which could result in multiple active phases, among them rapid spiking and quiescence phases which can switch from one to another and consequently create complex bursting patterns. The main results reveal that it is beneficial to restore the stability and balance of a ecosystem for species with group defence by moderately reducing population densities and the group defence capacity.


Sign in / Sign up

Export Citation Format

Share Document