DYNAMICS ON A HOLLING II PREDATOR–PREY MODEL WITH STATE-DEPENDENT IMPULSIVE CONTROL

2012 ◽  
Vol 05 (03) ◽  
pp. 1260006 ◽  
Author(s):  
BING LIU ◽  
YE TIAN ◽  
BAOLIN KANG

According to biological and chemical control strategy for pest control, a Holling II functional response predator–prey system concerning state-dependent impulsive control is investigated. We define the successor functions of semi-continuous dynamic system and give an existence theorem of order 1 periodic solution of such a system. By means of sequence convergence rules and qualitative analysis, we successfully get the conditions of existence and attractiveness of order 1 periodic solution. Our results show that our method used in this paper is more efficient and easier than the existing methods to prove the existence and attractiveness of order 1 periodic solution.

2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Huidong Cheng ◽  
Fang Wang ◽  
Tongqian Zhang

According to the different effects of biological and chemical control, we propose a model for Holling I functional response predator-prey system concerning pest control which adopts different control methods at different thresholds. By using differential equation geometry theory and the method of successor functions, we prove that the existence of order one periodic solution of such system and the attractiveness of the order one periodic solution by sequence convergence rules and qualitative analysis. Numerical simulations are carried out to illustrate the feasibility of our main results which show that our method used in this paper is more efficient and easier than the existing ones for proving the existence of order one periodic solution.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Huidong Cheng ◽  
Tongqian Zhang ◽  
Fang Wang

According to the integrated pest management strategies, a Holling type I functional response predator-prey system concerning state-dependent impulsive control is investigated. By using differential equation geometry theory and the method of successor functions, we prove the existence of order one periodic solution, and the attractivity of the order one periodic solution by sequence convergence rules and qualitative analysis. Numerical simulations are carried out to illustrate the feasibility of our main results which show that our method used in this paper is more efficient than the existing ones for proving the existence and attractiveness of order one periodic solution.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sekson Sirisubtawee ◽  
Nattawut Khansai ◽  
Akapak Charoenloedmongkhon

AbstractIn the present article, we propose and analyze a new mathematical model for a predator–prey system including the following terms: a Monod–Haldane functional response (a generalized Holling type IV), a term describing the anti-predator behavior of prey populations and one for an impulsive control strategy. In particular, we establish the existence condition under which the system has a locally asymptotically stable prey-eradication periodic solution. Violating such a condition, the system turns out to be permanent. Employing bifurcation theory, some conditions, under which the existence and stability of a positive periodic solution of the system occur but its prey-eradication periodic solution becomes unstable, are provided. Furthermore, numerical simulations for the proposed model are given to confirm the obtained theoretical results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Changtong Li ◽  
Sanyi Tang ◽  
Robert A. Cheke

Abstract An expectation for optimal integrated pest management is that the instantaneous numbers of natural enemies released should depend on the densities of both pest and natural enemy in the field. For this, a generalised predator–prey model with nonlinear impulsive control tactics is proposed and its dynamics is investigated. The threshold conditions for the global stability of the pest-free periodic solution are obtained based on the Floquet theorem and analytic methods. Also, the sufficient conditions for permanence are given. Additionally, the problem of finding a nontrivial periodic solution is confirmed by showing the existence of a nontrivial fixed point of the model’s stroboscopic map determined by a time snapshot equal to the common impulsive period. In order to address the effects of nonlinear pulse control on the dynamics and success of pest control, a predator–prey model incorporating the Holling type II functional response function as an example is investigated. Finally, numerical simulations show that the proposed model has very complex dynamical behaviour, including period-doubling bifurcation, chaotic solutions, chaos crisis, period-halving bifurcations and periodic windows. Moreover, there exists an interesting phenomenon whereby period-doubling bifurcation and period-halving bifurcation always coexist when nonlinear impulsive controls are adopted, which makes the dynamical behaviour of the model more complicated, resulting in difficulties when designing successful pest control strategies.


2008 ◽  
Vol 2008 ◽  
pp. 1-15 ◽  
Author(s):  
Can-Yun Huang ◽  
Min Zhao ◽  
Hai-Feng Huo

A stage-structured three-species predator-prey model with Beddington-DeAngelis and Holling II functional response is introduced. Based on the comparison theorem, sufficient and necessary conditions which guarantee the predator and the prey species to be permanent are obtained. An example is also presented to illustrate our main results.


2011 ◽  
Vol 130-134 ◽  
pp. 385-390
Author(s):  
Ling Zhen Dong ◽  
Lan Sun Chen

With some theory about continuous and impulsive dynamical system, an impulsive model based on a special predator-prey system is considered. We assume that the impulsive effects occur when the density of the prey reaches a given value. For such a state-dependent impulsive system, the existence, uniqueness and orbital asymptotic stability of an order-1 periodic solution are discussed. Further, the existence of an order-2 periodic solution is also obtained, and persistence of the system is investigated.


Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-19
Author(s):  
Y. Tian ◽  
H. M. Li

In presence of predator population, the prey population may significantly change their behavior. Fear for predator population enhances the survival probability of prey population, and it can greatly reduce the reproduction of prey population. In this study, we propose a predator-prey fishery model introducing the cost of fear into prey reproduction with Holling type-II functional response and prey-dependent harvesting and investigate the global dynamics of the proposed model. For the system without harvest, it is shown that the level of fear may alter the stability of the positive equilibrium, and an expression of fear critical level is characterized. For the harvest system, the existence of the semitrivial order-1 periodic solution and positive order- q ( q ≥ 1 ) periodic solution is discussed by the construction of a Poincaré map on the phase set, and the threshold conditions are given, which can not only transform state-dependent harvesting into a cycle one but also provide a possibility to determine the harvest frequency. In addition, to ensure a certain robustness of the adopted harvest policy, the threshold condition for the stability of the order- q periodic solution is given. Meanwhile, to achieve a good economic profit, an optimization problem is formulated and the optimum harvest level is obtained. Mathematical findings have been validated in numerical simulation by MATLAB. Different effects of different harvest levels and different fear levels have been demonstrated by depicting figures in numerical simulation using MATLAB.


2009 ◽  
Vol 02 (04) ◽  
pp. 419-442 ◽  
Author(s):  
FENGYAN ZHOU

A new non-autonomous predator-prey system with the effect of viruses on the prey is investigated. By using the method of coincidence degree, some sufficient conditions are obtained for the existence of a positive periodic solution. Moreover, with the help of an appropriately chosen Lyapunov function, the global attractivity of the positive periodic solution is discussed. In the end, a numerical simulation is used to illustrate the feasibility of our results.


Sign in / Sign up

Export Citation Format

Share Document