scholarly journals Numerical Study of Detonation Wave Propagation in the Variable Cross-Section Channel Using Unstructured Computational Grids

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Alexander Lopato ◽  
Pavel Utkin

The work is dedicated to the numerical study of detonation wave initiation and propagation in the variable cross-section axisymmetric channel filled with the model hydrogen-air mixture. The channel models the large-scale device for the utilization of worn-out tires. Mathematical model is based on two-dimensional axisymmetric Euler equations supplemented by global chemical kinetics model. The finite volume computational algorithm of the second approximation order for the calculation of two-dimensional flows with detonation waves on fully unstructured grids with triangular cells is developed. Three geometrical configurations of the channel are investigated, each with its own degree of the divergence of the conical part of the channel from the point of view of the pressure from the detonation wave on the end wall of the channel. The problem in consideration relates to the problem of waste recycling in the devices based on the detonation combustion of the fuel.

2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


2021 ◽  
Author(s):  
Shengrong Xie ◽  
Yiyi Wu ◽  
Dongdong Chen ◽  
Ruipeng Liu ◽  
Xintao Han ◽  
...  

Abstract In deep underground mining, achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge. Owing to the coupling action of multiple factors such as deep high stress, adjacent faults, cross-layer design, weak lithology, broken surrounding rock, variable cross-sections, wide sections up to 9.9 m, and clusters of nearby chambers, there was severe deformation and breakdown in the No. 10 intersection of the roadway of large-scale variable cross-section at the − 760 m level in the Nanfeng working area of the Wuyang Coal Mine. As there are insufficient examples in engineering methods pertaining to the geological environment described above, the numerical calculation model was oversimplified and support theory underdeveloped; therefore, it is imperative to develop an effective support system for the stability and sustenance of deep roadways. In this study, a quantitative analysis of the geological environment of the roadway through field observations, borehole peeking, and ground stress testing is carried out to establish the FLAC 3D variable cross-section crossing roadway model. This model is combined with the strain softening constitutive (surrounding rock) and Mohr-Coulomb constitutive (other deep rock formations) models to construct a compression arch mechanical model for deep soft rock, based on the quadratic parabolic Mohr criterion. An integrated control technology of bolting and grouting that is mainly composed of a high-strength hollow grouting cable bolt equipped with modified cement grouting materials and a high-elongation cable bolt is developed by analyzing the strengthening properties of the surrounding rock before and after bolting, based on the Heok-Brown criterion. As a result of on-site practice, the following conclusions are drawn: (1) The plastic zone of the roof of the cross roadway is approximately 6 m deep in this environment, the tectonic stress is nearly 30 MPa, and the surrounding rock is severely fractured. (2) The deformation of the roadway progressively increases from small to large cross-sections, almost doubling at the largest cross-section. The plastic zone is concentrated at the top plate and shoulder and decreases progressively from the two sides to the bottom corner. The range of stress concentration at the sides of the intersection roadway close to the passageway is wider and higher. (3) The 7 m-thick reinforced compression arch constructed under the strengthening support scheme has a bearing capacity enhanced by 1.8 to 2.3 times and increase in thickness of the bearing structure by 1.76 times as compared to the original scheme. (4) The increase in the mechanical parameters c and φ of the surrounding rock after anchoring causes a significant increase in σc and σt; the pulling force of the cable bolt beneath the new grouting material is more than twice that of ordinary cement grout, and according to the test, the supporting stress field shows that the 7.24 m surrounding rock is compacted and strengthened in addition to providing a strong foundation for the bolt (cable). On-site monitoring shows that the 60-day convergence is less than 30 mm, indicating that the stability control of the roadway is successful.


2011 ◽  
Vol 243-249 ◽  
pp. 4935-4938
Author(s):  
Li Li ◽  
Xiao Ze Du

The heat transfer characteristic through periodical variable cross-section passage is studied with numerical scheme. The results in multi-period variable cross-section channel show that the heat transfer enhancement can be obtained by forming flow destabilization at large Reynolds number. The parameters include pressure, velocity, temperature in the channel are symmetric about central line at low Reynolds number, then change to asymmetric at high Reynolds number. The variations occur firstly at the downstream near outlet of the channel and move upstream, which could improve the fluid mixing to increase the enhancement of heat transfer in channel.


2012 ◽  
Vol 256-259 ◽  
pp. 1177-1180
Author(s):  
Rui Lang Cao ◽  
Shao Hui He ◽  
De Lian Gao

Based on the engineering background of New Beijing-Zhangjiakou Inter-city railway Badaling underground station and tunnel transition section construction, the problem of tri-arch and large-span variable single arch construction schemes in the transition section launched research. This paper draws some basis and the law as reference in construction process by the simulate calculation of ABAQUS finite element analysis software. This thesis discuss the frequently-used methods(middle cell method, one-side wall drift heading method, CRD-4 holes method and CRD-6 holes method) that is used in large-scale variable cross-section tunnel engineering research and analysis the stress, deformation and plastic areas distribution of surrounding rock by the simulate calculation of construction process. By comparative analysis, confirm the best construction scheme of transition section: the middle cell method applies to tri-arch cross-section and the CRD-4 holes method applies to large-span single arch of variable cross-section. It can offer direct guidance to the Badaling underground station and tunnel transition section project and some reference to similar underground projects.


Sign in / Sign up

Export Citation Format

Share Document