scholarly journals A calculation procedure for the partially-parabolized Navier-Stokes equations in transformed coordinates for two-dimensional flow in channels of variable cross-section

1983 ◽  
Author(s):  
Philip Charles Eberhardt Jorgenson
1994 ◽  
Vol 61 (3) ◽  
pp. 629-633 ◽  
Author(s):  
S. H. Smith

When a stretching surface is moved quickly, for a short period of time, a pulse is transmitted to the surrounding fluid. Here we describe an exact solution in terms of a similarity variable for the Navier-Stokes equations which represents the effect of this pulse for two-dimensional flow. The unusual feature is that this solution is only valid for a limited range of the Reynolds number; outside this domain unbounded velocities result.


2015 ◽  
Vol 07 (02) ◽  
pp. 1550019 ◽  
Author(s):  
A. Kuzmin

2D and 3D transonic flows in a channel of variable cross-section are studied numerically using a solver based on the Reynolds-averaged Navier–Stokes equations. The flow velocity is supersonic at the inlet and outlet of the channel. Between the supersonic regions, there is a local subsonic region whose upstream boundary is a shock wave, whereas the downstream boundary is a sonic surface. The sonic surface gives rise to an instability of the shock wave position in the channel. Computations reveal a hysteresis in the shock position versus the inflow Mach number. A dependence of the hysteresis on the velocity profile given at the inlet is examined.


2016 ◽  
Vol 799 ◽  
pp. 246-264 ◽  
Author(s):  
K. Seshasayanan ◽  
A. Alexakis

We study the linear stage of the dynamo instability of a turbulent two-dimensional flow with three components $(u(x,y,t),v(x,y,t),w(x,y,t))$ that is sometimes referred to as a 2.5-dimensional (2.5-D) flow. The flow evolves based on the two-dimensional Navier–Stokes equations in the presence of a large-scale drag force that leads to the steady state of a turbulent inverse cascade. These flows provide an approximation to very fast rotating flows often observed in nature. The low dimensionality of the system allows for the realization of a large number of numerical simulations and thus the investigation of a wide range of fluid Reynolds numbers $Re$, magnetic Reynolds numbers $Rm$ and forcing length scales. This allows for the examination of dynamo properties at different limits that cannot be achieved with three-dimensional simulations. We examine dynamos for both large and small magnetic Prandtl-number turbulent flows $Pm=Rm/Re$, close to and away from the dynamo onset, as well as dynamos in the presence of scale separation. In particular, we determine the properties of the dynamo onset as a function of $Re$ and the asymptotic behaviour in the large $Rm$ limit. We are thus able to give a complete description of the dynamo properties of these turbulent 2.5-D flows.


1998 ◽  
Vol 363 ◽  
pp. 199-228 ◽  
Author(s):  
AURELIUS PROCHAZKA ◽  
D. I. PULLIN

We investigate, numerically and analytically, the structure and stability of steady and quasi-steady solutions of the Navier–Stokes equations corresponding to stretched vortices embedded in a uniform non-symmetric straining field, (αx, βy, γz), α+β+γ=0, one principal axis of extensional strain of which is aligned with the vorticity. These are known as non-symmetric Burgers vortices (Robinson & Saffman 1984). We consider vortex Reynolds numbers R=Γ/(2πv) where Γ is the vortex circulation and v the kinematic viscosity, in the range R=1−104, and a broad range of strain ratios λ=(β−α)/(β+α) including λ>1, and in some cases λ[Gt ]1. A pseudo-spectral method is used to obtain numerical solutions corresponding to steady and quasi-steady vortex states over our whole (R, λ) parameter space including λ where arguments proposed by Moffatt, Kida & Ohkitani (1994) demonstrate the non-existence of strictly steady solutions. When λ[Gt ]1, R[Gt ]1 and ε≡λ/R[Lt ]1, we find an accurate asymptotic form for the vorticity in a region 1<r/(2v/γ)1/2[les ]ε1/2, giving very good agreement with our numerical solutions. This suggests the existence of an extended region where the exponentially small vorticity is confined to a nearly cat's-eye-shaped region of the almost two-dimensional flow, and takes a constant value nearly equal to Γγ/(4πv)exp[−1/(2eε)] on bounding streamlines. This allows an estimate of the leakage rate of circulation to infinity as ∂Γ/∂t =(0.48475/4π)γε−1Γ exp (−1/2eε) with corresponding exponentially slow decay of the vortex when λ>1. An iterative technique based on the power method is used to estimate the largest eigenvalues for the non-symmetric case λ>0. Stability is found for 0[les ]λ[les ]1, and a neutrally convective mode of instability is found and analysed for λ>1. Our general conclusion is that the generalized non-symmetric Burgers vortex is unconditionally stable to two-dimensional disturbances for all R, 0[les ]λ[les ]1, and that when λ>1, the vortex will decay only through exponentially slow leakage of vorticity, indicating extreme robustness in this case.


Sign in / Sign up

Export Citation Format

Share Document