Adaptive Fuzzy Control of Uncertain Robotic Manipulator
This paper designs a kind of adaptive fuzzy controller for robotic manipulator considering external disturbances and modeling errors. First, n-link uncertain robotic manipulator dynamics based on the Lagrange equation is changed into a two-order multiple-input multiple-output (MIMO) system via feedback technique. Then, an adaptive fuzzy logic control scheme is studied by using sliding theory, which adopts the adaptive fuzzy logic systems to estimate the uncertainties and employs a filtered error to make up for the approximation errors, hence enhancing the robust performance of robotic manipulator system uncertainties. It is proved that the tracking errors converge into zero asymptotically by using Lyapunov stability theory. Last, we take a two-link rigid robotic manipulator as an example and give its simulations. Compared with the existing results in the literature, the proposed controller shows higher precision and stronger robustness.