scholarly journals Solving Fuzzy Volterra Integrodifferential Equations of Fractional Order by Bernoulli Wavelet Method

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
R. Mastani Shabestari ◽  
R. Ezzati ◽  
T. Allahviranloo

A matrix method called the Bernoulli wavelet method is presented for numerically solving the fuzzy fractional integrodifferential equations. Using the collocation points, this method transforms the fuzzy fractional integrodifferential equation to a matrix equation which corresponds to a system of nonlinear algebraic equations with unknown coefficients. To illustrate the method, it is applied to certain fuzzy fractional integrodifferential equations, and the results are compared.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Berna Bülbül ◽  
Mehmet Sezer

We have suggested a numerical approach, which is based on an improved Taylor matrix method, for solving Duffing differential equations. The method is based on the approximation by the truncated Taylor series about center zero. Duffing equation and conditions are transformed into the matrix equations, which corresponds to a system of nonlinear algebraic equations with the unknown coefficients, via collocation points. Combining these matrix equations and then solving the system yield the unknown coefficients of the solution function. Numerical examples are included to demonstrate the validity and the applicability of the technique. The results show the efficiency and the accuracy of the present work. Also, the method can be easily applied to engineering and science problems.


2017 ◽  
Vol 14 (03) ◽  
pp. 1750022 ◽  
Author(s):  
P. K. Sahu ◽  
S. Saha Ray

In this paper, Bernoulli wavelet method has been developed to solve nonlinear weakly singular Volterra integro-differential equations. Bernoulli wavelets are generated by dilation and translation of Bernoulli polynomials. The properties of Bernoulli wavelets and Bernoulli polynomials are first presented. The present wavelet method reduces these integral equations to a system of nonlinear algebraic equations and again these algebraic systems have been solved numerically by Newton’s method. Convergence analysis of the present method has been discussed in this paper. Some illustrative examples have been demonstrated to show the applicability and accuracy of the present method.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
E. H. Doha ◽  
D. Baleanu ◽  
A. H. Bhrawy ◽  
R. M. Hafez

A new Legendre rational pseudospectral scheme is proposed and developed for solving numerically systems of linear and nonlinear multipantograph equations on a semi-infinite interval. A Legendre rational collocation method based on Legendre rational-Gauss quadrature points is utilized to reduce the solution of such systems to systems of linear and nonlinear algebraic equations. In addition, accurate approximations are achieved by selecting few Legendre rational-Gauss collocation points. The numerical results obtained by this method have been compared with various exact solutions in order to demonstrate the accuracy and efficiency of the proposed method. Indeed, for relatively limited nodes used, the absolute error in our numerical solutions is sufficiently small.


Author(s):  
Zhe Wang ◽  
Qiang Tian ◽  
Haiyan Hu

The mechanisms with uncertain parameters may exhibit multiple dynamic response patterns. As a single surrogate model can hardly describe all the dynamic response patterns of mechanism dynamics, a new computation methodology is proposed to study multiple dynamic response patterns of a flexible multibody system with uncertain random parameters. The flexible multibody system of concern is modeled by using a unified mesh of the absolute nodal coordinate formulation (ANCF). The polynomial chaos (PC) expansion with collocation methods is used to generate the surrogate model for the flexible multibody system with random parameters. Several subsurrogate models are used to describe multiple dynamic response patterns of the system dynamics. By the motivation of the data mining, the Dirichlet process mixture model (DPMM) is used to determine the dynamic response patterns and project the collocation points into different patterns. The uncertain differential algebraic equations (DAEs) for the flexible multibody system are directly transformed into the uncertain nonlinear algebraic equations by using the generalized-alpha algorithm. Then, the PC expansion is further used to transform the uncertain nonlinear algebraic equations into several sets of nonlinear algebraic equations with deterministic collocation points. Finally, two numerical examples are presented to validate the proposed methodology. The first confirms the effectiveness of the proposed methodology, and the second one shows the effectiveness of the proposed computation methodology in multiple dynamic response patterns study of a complicated spatial flexible multibody system with uncertain random parameters.


2020 ◽  
Vol 17 (10) ◽  
pp. 2050011
Author(s):  
Şuayip Yüzbaşı ◽  
Gamze Yıldırım

In this study, a method for numerically solving Riccatti type differential equations with functional arguments under the mixed condition is presented. For the method, Legendre polynomials, the solution forms and the required expressions are written in the matrix form and the collocation points are defined. Then, by using the obtained matrix relations and the collocation points, the Riccati problem is reduced to a system of nonlinear algebraic equations. The condition in the problem is written in the matrix form and a new system of the nonlinear algebraic equations is found with the aid of the obtained matrix relation. This system is solved and thus the coefficient matrix is detected. This coefficient matrix is written in the solution form and hence approximate solution is obtained. In addition, by defining the residual function, an error problem is established and approximate solutions which give better numerical results are obtained. To demonstrate that the method is trustworthy and convenient, the presented method and error estimation technique are explicated by numerical examples. Consequently, the numerical results are shown more clearly with the aid of the tables and graphs and also the results are compared with the results of other methods.


2018 ◽  
Vol 9 (1-2) ◽  
pp. 16-27 ◽  
Author(s):  
Mohamed Abdel- Latif Ramadan ◽  
Mohamed R. Ali

In this paper, an efficient numerical method to solve a system of linear fuzzy Fredholm integral equations of the second kind based on Bernoulli wavelet method (BWM) is proposed. Bernoulli wavelets have been generated by dilation and translation of Bernoulli polynomials. The aim of this paper is to apply Bernoulli wavelet method to obtain approximate solutions of a system of linear Fredholm fuzzy integral equations. First we introduce properties of Bernoulli wavelets and Bernoulli polynomials, then we used it to transform the integral equations to the system of algebraic equations. The error estimates of the proposed method is given and compared by solving some numerical examples.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Mohammad Maleki ◽  
M. Tavassoli Kajani ◽  
I. Hashim ◽  
A. Kilicman ◽  
K. A. M. Atan

We propose a numerical method for solving nonlinear initial-value problems of Lane-Emden type. The method is based upon nonclassical Gauss-Radau collocation points, and weighted interpolation. Nonclassical orthogonal polynomials, nonclassical Radau points and weighted interpolation are introduced on arbitrary intervals. Then they are utilized to reduce the computation of nonlinear initial-value problems to a system of nonlinear algebraic equations. We also present the comparison of this work with some well-known results and show that the present solution is very accurate.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
H. Jafari ◽  
S. Nemati ◽  
R. M. Ganji

AbstractIn this research, we study a general class of variable order integro-differential equations (VO-IDEs). We propose a numerical scheme based on the shifted fifth-kind Chebyshev polynomials (SFKCPs). First, in this scheme, we expand the unknown function and its derivatives in terms of the SFKCPs. To carry out the proposed scheme, we calculate the operational matrices depending on the SFKCPs to find an approximate solution of the original problem. These matrices, together with the collocation points, are used to transform the original problem to form a system of linear or nonlinear algebraic equations. We discuss the convergence of the method and then give an estimation of the error. We end by solving numerical tests, which show the high accuracy of our results.


Author(s):  
S. Balaji

In this paper, a new method is presented for solving generalized nonlinear singular Lane–Emden type equations arising in the field of astrophysics, by introducing Bernoulli wavelet operational matrix of derivative (BWOMD). Bernoulli wavelet expansions together with this operational matrix method, by taking suitable collocation points, converts the given Lane–Emden type equations into a system of algebraic equations. Solution to the problem is identified by solving this system of equations. Further applicability and simplicity of the proposed method has been demonstrated by some examples and comparison with other recent methods. The obtained results guarantee that the proposed BWOMD method provides the good approximate solution to the generalized nonlinear singular Lane–Emden type equations.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
S. H. Behiry

A numerical method for solving nonlinear Fredholm integrodifferential equations is proposed. The method is based on hybrid functions approximate. The properties of hybrid of block pulse functions and orthonormal Bernstein polynomials are presented and utilized to reduce the problem to the solution of nonlinear algebraic equations. Numerical examples are introduced to illustrate the effectiveness and simplicity of the present method.


Sign in / Sign up

Export Citation Format

Share Document