scholarly journals Operational matrices based on the shifted fifth-kind Chebyshev polynomials for solving nonlinear variable order integro-differential equations

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
H. Jafari ◽  
S. Nemati ◽  
R. M. Ganji

AbstractIn this research, we study a general class of variable order integro-differential equations (VO-IDEs). We propose a numerical scheme based on the shifted fifth-kind Chebyshev polynomials (SFKCPs). First, in this scheme, we expand the unknown function and its derivatives in terms of the SFKCPs. To carry out the proposed scheme, we calculate the operational matrices depending on the SFKCPs to find an approximate solution of the original problem. These matrices, together with the collocation points, are used to transform the original problem to form a system of linear or nonlinear algebraic equations. We discuss the convergence of the method and then give an estimation of the error. We end by solving numerical tests, which show the high accuracy of our results.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yaser Rostami

Purpose This paper aims to present a new method for the approximate solution of two-dimensional nonlinear Volterra–Fredholm partial integro-differential equations with boundary conditions using two-dimensional Chebyshev wavelets. Design/methodology/approach For this purpose, an operational matrix of product and integration of the cross-product and differentiation are introduced that essentially of Chebyshev wavelets. The use of these operational matrices simplifies considerably the structure of the computation used for a set of the algebraic system has been obtained by using the collocation points and solved. Findings Theorem for convergence analysis and some illustrative examples of using the presented method to show the validity, efficiency, high accuracy and applicability of the proposed technique. Some figures are plotted to demonstrate the error analysis of the proposed scheme. Originality/value This paper uses operational matrices of two-dimensional Chebyshev wavelets and helps to obtain high accuracy of the method.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
S. Mockary ◽  
E. Babolian ◽  
A. R. Vahidi

Abstract In this paper, we use operational matrices of Chebyshev polynomials to solve fractional partial differential equations (FPDEs). We approximate the second partial derivative of the solution of linear FPDEs by operational matrices of shifted Chebyshev polynomials. We apply the operational matrix of integration and fractional integration to obtain approximations of (fractional) partial derivatives of the solution and the approximation of the solution. Then we substitute the operational matrix approximations in the FPDEs to obtain a system of linear algebraic equations. Finally, solving this system, we obtain the approximate solution. Numerical experiments show an exponential rate of convergence and hence the efficiency and effectiveness of the method.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Y. Ordokhani ◽  
S. Davaei far

A numerical method for solving differential equations by approximating the solution in the Bernstein polynomial basis is proposed. At first, we demonstrate the relation between the Bernstein and Legendre polynomials. By using this relation, we derive the operational matrices of integration and product of the Bernstein polynomials. Then, we employ them for solving differential equations. The method converts the differential equation to a system of linear algebraic equations. Finally some examples and their numerical solutions are given; comparing the results with the numerical results obtained from the other methods, we show the high accuracy and efficiency of the proposed method.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Khadijeh Sadri ◽  
Kamyar Hosseini ◽  
Dumitru Baleanu ◽  
Ali Ahmadian ◽  
Soheil Salahshour

AbstractThe shifted Chebyshev polynomials of the fifth kind (SCPFK) and the collocation method are employed to achieve approximate solutions of a category of the functional equations, namely variable-order time-fractional weakly singular partial integro-differential equations (VTFWSPIDEs). A pseudo-operational matrix (POM) approach is developed for the numerical solution of the problem under study. The suggested method changes solving the VTFWSPIDE into the solution of a system of linear algebraic equations. Error bounds of the approximate solutions are obtained, and the application of the proposed scheme is examined on five problems. The results confirm the applicability and high accuracy of the method for the numerical solution of fractional singular partial integro-differential equations.


2020 ◽  
Vol 25 (4) ◽  
pp. 680-701
Author(s):  
Haniye Dehestani ◽  
Yadollah Ordokhani ◽  
Mohsen Razzaghi

In this paper, we apply Legendre-Laguerre functions (LLFs) and collocation method to obtain the approximate solution of variable-order time-fractional partial integro-differential equations (VO-TF-PIDEs) with the weakly singular kernel. For this purpose, we derive the pseudo-operational matrices with the use of the transformation matrix. The collocation method and pseudo-operational matrices transfer the problem to a system of algebraic equations. Also, the error analysis of the proposed method is given. We consider several examples to illustrate the proposed method is accurate.


2021 ◽  
Vol 5 (4) ◽  
pp. 219
Author(s):  
Somayeh Nemati ◽  
Pedro M. Lima ◽  
Delfim F. M. Torres

We introduce a new numerical method, based on Bernoulli polynomials, for solving multiterm variable-order fractional differential equations. The variable-order fractional derivative was considered in the Caputo sense, while the Riemann–Liouville integral operator was used to give approximations for the unknown function and its variable-order derivatives. An operational matrix of variable-order fractional integration was introduced for the Bernoulli functions. By assuming that the solution of the problem is sufficiently smooth, we approximated a given order of its derivative using Bernoulli polynomials. Then, we used the introduced operational matrix to find some approximations for the unknown function and its derivatives. Using these approximations and some collocation points, the problem was reduced to the solution of a system of nonlinear algebraic equations. An error estimate is given for the approximate solution obtained by the proposed method. Finally, five illustrative examples were considered to demonstrate the applicability and high accuracy of the proposed technique, comparing our results with the ones obtained by existing methods in the literature and making clear the novelty of the work. The numerical results showed that the new method is efficient, giving high-accuracy approximate solutions even with a small number of basis functions and when the solution to the problem is not infinitely differentiable, providing better results and a smaller number of basis functions when compared to state-of-the-art methods.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
C. Guler ◽  
S. O. Kaya

In this study, a matrix method based on Taylor polynomials and collocation points is presented for the approximate solution of a class of nonlinear differential equations, which have many applications in mathematics, physics and engineering. By means of matrix forms of the Taylor polynomials and their derivatives, the technique we have used reduces the solution of the nonlinear equation with mixed conditions to the solution of a matrix equation which corresponds to a system of nonlinear algebraic equations with the unknown Taylor coefficients. On the other hand, to illustrate the validity and applicability of the method, some numerical examples together with residual error analysis are performed and the obtained results are compared with the existing results in literature.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
E. H. Doha ◽  
D. Baleanu ◽  
A. H. Bhrawy ◽  
R. M. Hafez

A new Legendre rational pseudospectral scheme is proposed and developed for solving numerically systems of linear and nonlinear multipantograph equations on a semi-infinite interval. A Legendre rational collocation method based on Legendre rational-Gauss quadrature points is utilized to reduce the solution of such systems to systems of linear and nonlinear algebraic equations. In addition, accurate approximations are achieved by selecting few Legendre rational-Gauss collocation points. The numerical results obtained by this method have been compared with various exact solutions in order to demonstrate the accuracy and efficiency of the proposed method. Indeed, for relatively limited nodes used, the absolute error in our numerical solutions is sufficiently small.


1989 ◽  
Vol 111 (2) ◽  
pp. 187-193 ◽  
Author(s):  
C. Nataraj ◽  
H. D. Nelson

A new quantitative method of estimating steady state periodic behavior in nonlinear systems, based on the trigonometric collocation method, is outlined. A procedure is developed to analyze large rotor dynamic systems with nonlinear supports by the use of the above method in conjunction with Component Mode Synthesis. The algorithm discussed is seen to reduce the original problem to solving nonlinear algebraic equations in terms of only the coordinates associated with the nonlinear supports and is a big improvement over commonly used integration methods. The feasibility and advantages of the procedure so developed are illustrated with the help of an example of a typical rotor dynamic system with an uncentered squeeze film damper. Future work on the investigation of the stability of the periodic response so obtained is outlined.


Author(s):  
Umer Saeed

In this paper, we present a reliable method for solving system of fractional nonlinear differential equations. The proposed technique utilizes the Haar wavelets in conjunction with a quasilinearization technique. The operational matrices are derived and used to reduce each equation in a system of fractional differential equations to a system of algebraic equations. Convergence analysis and implementation process for the proposed technique are presented. Numerical examples are provided to illustrate the applicability and accuracy of the technique.


Sign in / Sign up

Export Citation Format

Share Document