scholarly journals A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized Decomposition

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Rubén Ibáñez ◽  
Emmanuelle Abisset-Chavanne ◽  
Amine Ammar ◽  
David González ◽  
Elías Cueto ◽  
...  

Sparse model identification by means of data is especially cumbersome if the sought dynamics live in a high dimensional space. This usually involves the need for large amount of data, unfeasible in such a high dimensional settings. This well-known phenomenon, coined as the curse of dimensionality, is here overcome by means of the use of separate representations. We present a technique based on the same principles of the Proper Generalized Decomposition that enables the identification of complex laws in the low-data limit. We provide examples on the performance of the technique in up to ten dimensions.

2021 ◽  
pp. 1-12
Author(s):  
Jian Zheng ◽  
Jianfeng Wang ◽  
Yanping Chen ◽  
Shuping Chen ◽  
Jingjin Chen ◽  
...  

Neural networks can approximate data because of owning many compact non-linear layers. In high-dimensional space, due to the curse of dimensionality, data distribution becomes sparse, causing that it is difficulty to provide sufficient information. Hence, the task becomes even harder if neural networks approximate data in high-dimensional space. To address this issue, according to the Lipschitz condition, the two deviations, i.e., the deviation of the neural networks trained using high-dimensional functions, and the deviation of high-dimensional functions approximation data, are derived. This purpose of doing this is to improve the ability of approximation high-dimensional space using neural networks. Experimental results show that the neural networks trained using high-dimensional functions outperforms that of using data in the capability of approximation data in high-dimensional space. We find that the neural networks trained using high-dimensional functions more suitable for high-dimensional space than that of using data, so that there is no need to retain sufficient data for neural networks training. Our findings suggests that in high-dimensional space, by tuning hidden layers of neural networks, this is hard to have substantial positive effects on improving precision of approximation data.


2001 ◽  
Vol 24 (3) ◽  
pp. 305-320 ◽  
Author(s):  
Benoit Lemaire ◽  
Philippe Dessus

This paper presents Apex, a system that can automatically assess a student essay based on its content. It relies on Latent Semantic Analysis, a tool which is used to represent the meaning of words as vectors in a high-dimensional space. By comparing an essay and the text of a given course on a semantic basis, our system can measure how well the essay matches the text. Various assessments are presented to the student regarding the topic, the outline and the coherence of the essay. Our experiments yield promising results.


Author(s):  
Jian Zheng ◽  
Jianfeng Wang ◽  
Yanping Chen ◽  
Shuping Chen ◽  
Jingjin Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document