scholarly journals Gear Shifting of Quadriceps during Isometric Knee Extension Disclosed Using Ultrasonography

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Shu Zhang ◽  
Weijian Huang ◽  
Yu Zeng ◽  
Wenxiu Shi ◽  
Xianfen Diao ◽  
...  

Ultrasonography has been widely employed to estimate the morphological changes of muscle during contraction. To further investigate the motion pattern of quadriceps during isometric knee extensions, we studied the relative motion pattern between femur and quadriceps under ultrasonography. An interesting observation is that although the force of isometric knee extension can be controlled to change almost linearly, femur in the simultaneously captured ultrasound video sequences has several different piecewise moving patterns. This phenomenon is like quadriceps having several forward gear ratios like a car starting from rest towards maximal voluntary contraction (MVC) and then returning to rest. Therefore, to verify this assumption, we captured several ultrasound video sequences of isometric knee extension and collected the torque/force signal simultaneously. Then we extract the shapes of femur from these ultrasound video sequences using video processing techniques and study the motion pattern both qualitatively and quantitatively. The phenomenon can be seen easier via a comparison between the torque signal and relative spatial distance between femur and quadriceps. Furthermore, we use cluster analysis techniques to study the process and the clustering results also provided preliminary support to the conclusion that, during both ramp increasing and decreasing phases, quadriceps contraction may have several forward gear ratios relative to femur.

2018 ◽  
Vol 4 (67) ◽  
Author(s):  
Nerijus Masiulis ◽  
Albertas Skurvydas ◽  
Sigitas Kamandulis ◽  
Jūratė Kudirkaitė ◽  
Vytautas Sukockas ◽  
...  

The dominance of fatigue or post-activation potentiation (PAP) depends on the type, intensity, and duration of exercise and duration of the recovery before contractility is tested. Although the decrease in PAP magnitude with decreased exercise intensity is well documented (Vandervoort et al., 1983; Behm et al., 2004), it is not clear how PAP and fatigue influences the contractile properties of skeletal muscle when exercise is of different intensity but with the same amount of work performed. Thus it is important to understand the manifestation of PAP and fatigue of skeletal muscle after continuous maximal and submaximal contractions but with the same amount of work performed. Eight healthy untrained men (age 23—27 years, mass 83.5 ± 5.4 kg) performed maximal sustained isometric knee extension for 30 s (MVC-30 s) and on the other occasion the same subject performed sustained isometric knee extension for 60 s at 50% of maximal (50% MVC-60 s). We assumed that the amount of performed work was the same during both MVC-30 s and 50% MVC-60 s exercises. The experimental order was randomized. The contractile properties of quadriceps muscle evoked by electrical stimulation at 1 Hz (P 1), 10 Hz (P 10), 20 Hz (P 20), and 50 Hz (P 50) as well as contraction time (CT) and relaxation time (RT) of single twitch (P 1) and EMGrms of v. lateralis muscle were recorded before and immediately after the exercises (0 min) and 1, 2, and 3 min following the exercises. A significantly greater potentiation (p < 0.05) of P1 was observed after 30-s MVC (MVC-30 s) compared with the 60-s MVC (50% MVC-60 s) immediately after exercise and at 1 min of recovery. No changes in P 1 contraction time (CT) were observed during 3 min recovery period, however half relaxation of P 1 (½ RT) was more prolonged (p < 0.05) immediately after 50% MVC-60 s exercises. Moreover, immediately and 1 min post exercise the P 10 force after MVC-30 s exercise was higher (p < 0.05) compared to 50% MVC-60 s exercise. No differences between MVC-30 s and 50% MVC-60 s exercises were observed at high stimulation frequencies, maximal voluntary contraction force (MVC) as well as for EMGrms values during 3 min recovery period. The main finding of the present study was that PAP was observed after both maximal and submaximal intensity exercises when the same amount of work was performed. The more intensively exercise is performed, the more PAP offsets fatigue straight after exercise (maximal intensity); while after submaximal exercise PAP becomes more evident only during the recovery period.Keywords: skeletal muscle, isometric exercise, maximum voluntary contraction, recovery.


Author(s):  
Andrew M Alexander ◽  
Shane M Hammer ◽  
Kaylin D Didier ◽  
Lillie M Huckaby ◽  
Thomas J. Barstow

Maximal voluntary contraction force (MVC), potentiated twitch force (Qpot), and voluntary activation (%VA) recover to baseline within 90s following extreme-intensity exercise. However, methodological limitations masked important recovery kinetics. We hypothesized reductions in MVC, Qpot, and %VA at task failure following extreme-intensity exercise would be less than following severe-intensity exercise, and Qpot and MVC following extreme-intensity exercise would show significant recovery within 120s but remain depressed following severe-intensity exercise. Twelve subjects (6 men) completed two severe-intensity (40, 50%MVC) and two extreme-intensity (70, 80%MVC) isometric knee-extension exercise bouts to task failure (Tlim). Neuromuscular function was measured at baseline, Tlim, and through 150s of recovery. Each intensity significantly reduced MVC and Qpot compared to baseline. MVC was greater at T¬lim (p<0.01) and at 150s of recovery (p=0.004) following exercise at 80%MVC compared to severe-intensity exercise. Partial recovery of MVC and Qpot were detected within 150s following Tlim for each exercise intensity; Qpot recovered to baseline values within 150s of recovery following exercise at 80%MVC. No differences in %VA were detected pre- to post-exercise or across recovery for any intensity. Although further analysis showed sex-specific differences in MVC and Qpot, future studies should closely examine sex-dependent responses to extreme-intensity exercise. It is clear, however, that these data reinforce that mechanisms limiting exercise tolerance during extreme-intensity exercise recover quickly. NOVELTY: •Severe- and extreme-intensity exercise cause independent responses in fatigue accumulation and the subsequent recovery time courses. •Recovery of MVC and Qpot occurs much faster following extreme-intensity exercise in both men and women.


1993 ◽  
Vol 75 (1) ◽  
pp. 228-232 ◽  
Author(s):  
C. A. Ray ◽  
A. L. Mark

Recent studies have shown a lack of an increase in muscle sympathetic nerve activity (MSNA) during leg exercise. Experiments using isometric knee extension (IKE) have shown a biphasic response in MSNA with a decrease during the 1st min and a return of MSNA to control levels during the 2nd min of IKE. Moreover, MSNA was not augmented during postexercise muscle ischemia (PEMI) of the exercising leg, suggesting that the muscle metaboreflex may have not been engaged in these experiments. The purpose of the present study was 1) to examine MSNA during IKE performed to fatigue to determine whether MSNA could be increased with leg exercise and 2) to determine whether increases in MSNA during fatiguing IKE were associated with an augmented MSNA response during PEMI. IKE was initially performed to fatigue at 30% of maximal voluntary contraction in the sitting position (n = 7; trial 1). IKE elicited a marked increase in mean arterial pressure and heart rate (P < 0.01). Total MSNA (burst frequency x mean burst amplitude; units) in the contralateral leg increased 96 +/- 40% (P < 0.01) above control levels during the final 30 s of IKE (207 +/- 23 s). Subjects (n = 8) then performed IKE to fatigue followed by PEMI (trial 2). MSNA in the contralateral leg increased 107 +/- 50% (P < 0.01) above control levels during the final 30 s of IKE (169 +/- 12 s) and remained significantly elevated during PEMI (83 +/- 40% above control), indicating that the muscle metaboreflex was engaged during fatiguing IKE.(ABSTRACT TRUNCATED AT 250 WORDS)


2011 ◽  
Vol 111 (5) ◽  
pp. 1290-1295 ◽  
Author(s):  
John W. Chow ◽  
Dobrivoje S. Stokic

We tested the hypothesis that force variability and error during maintenance of submaximal isometric knee extension are greater in subacute stroke patients than in controls and are related to motor impairments. Contralesional (more-affected) and ipsilesional (less-affected) legs of 33 stroke patients with sufficiently high motor abilities (62 ± 13 yr, 16 ± 2 days postinjury) and the dominant leg of 20 controls (62 ± 10 yr) were tested in sitting position. After peak knee extension torque [maximum voluntary contraction (MVC)] was established, subjects maintained 10, 20, 30, and 50% of MVC as steady and accurate as possible for 10 s by matching voluntary force to the target level displayed on a monitor. Coefficient of variation (CV) and root-mean-square error (RMSE) were used to quantify force variability and error, respectively. The MVC was significantly smaller in the more-affected than less-affected leg, and both were significantly lower than in controls. The CV was significantly larger in the more-affected than less-affected leg at 20 and 50% MVC, whereas both were significantly larger compared with controls across all force levels. Both more-affected and less-affected legs of patients showed significantly greater RMSE than controls at 30 and 50% MVC. The CV and RMSE were not related to the Fugl-Meyer motor score or to the Rivermead Mobility Index. The CV negatively correlated with MVC in controls but only in the less-affected leg of patients. It is concluded that isometric knee extension strength and force control are bilaterally impaired soon after stroke but more so in the more-affected leg. Future studies should examine possible mechanisms and the evolution of these changes.


2018 ◽  
Vol 124 (3) ◽  
pp. 592-603 ◽  
Author(s):  
John W. Chow ◽  
Dobrivoje S. Stokic

We examined changes in variability, accuracy, frequency composition, and temporal regularity of force signal from vision-guided to memory-guided force-matching tasks in 17 subacute stroke and 17 age-matched healthy subjects. Subjects performed a unilateral isometric knee extension at 10, 30, and 50% of peak torque [maximum voluntary contraction (MVC)] for 10 s (3 trials each). Visual feedback was removed at the 5-s mark in the first two trials (feedback withdrawal), and 30 s after the second trial the subjects were asked to produce the target force without visual feedback (force recall). The coefficient of variation and constant error were used to quantify force variability and accuracy. Force structure was assessed by the median frequency, relative spectral power in the 0–3-Hz band, and sample entropy of the force signal. At 10% MVC, the force signal in subacute stroke subjects became steadier, more broadband, and temporally more irregular after the withdrawal of visual feedback, with progressively larger error at higher contraction levels. Also, the lack of modulation in the spectral frequency at higher force levels with visual feedback persisted in both the withdrawal and recall conditions. In terms of changes from the visual feedback condition, the feedback withdrawal produced a greater difference between the paretic, nonparetic, and control legs than the force recall. The overall results suggest improvements in force variability and structure from vision- to memory-guided force control in subacute stroke despite decreased accuracy. Different sensory-motor memory retrieval mechanisms seem to be involved in the feedback withdrawal and force recall conditions, which deserves further study. NEW & NOTEWORTHY We demonstrate that in the subacute phase of stroke, force signals during a low-level isometric knee extension become steadier, more broadband in spectral power, and more complex after removal of visual feedback. Larger force errors are produced when recalling target forces than immediately after withdrawing visual feedback. Although visual feedback offers better accuracy, it worsens force variability and structure in subacute stroke. The feedback withdrawal and force recall conditions seem to involve different memory retrieval mechanisms.


2015 ◽  
Vol 118 (4) ◽  
pp. 455-464 ◽  
Author(s):  
Daniel P. Credeur ◽  
Seth W. Holwerda ◽  
Robert M. Restaino ◽  
Phillip M. King ◽  
Kiera L. Crutcher ◽  
...  

Rapid-onset vasodilation (ROV) following single muscle contractions has been examined in the forearm of humans, but has not yet been characterized in the leg. Given known vascular differences between the arm and leg, we sought to characterize ROV following single muscle contractions in the leg. Sixteen healthy men performed random ordered single contractions at 5, 10, 20, 40, and 60% of their maximum voluntary contraction (MVC) using isometric knee extension made with the leg above and below heart level, and these were compared with single isometric contractions of the forearm (handgrip). Single thigh cuff compressions (300 mmHg) were utilized to estimate the mechanical contribution to leg ROV. Continuous blood flow was determined by duplex-Doppler ultrasound and blood pressure via finger photoplethysmography (Finometer). Single isometric knee extensor contractions produced intensity-dependent increases in peak leg vascular conductance that were significantly greater than the forearm in both the above- and below-heart level positions (e.g., above heart level: leg 20% MVC, +138 ± 28% vs. arm 20% MVC, +89 ± 17%; P < 0.05). Thigh cuff compressions also produced a significant hyperemic response, but these were brief and smaller in magnitude compared with single isometric contractions in the leg. Collectively, these data demonstrate the presence of a rapid and robust vasodilation to single muscle contractions in the leg that is largely independent of mechanical factors, thus establishing the leg as a viable model to study ROV in humans.


2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0011
Author(s):  
Adam Weaver ◽  
Dylan Roman ◽  
Maua Mosha ◽  
Nicholas Giampetruzzi

Background: The standard of care in ACL reconstruction (ACLR) typically involves standardized strength testing at 6 months or later to assess a patient’s readiness to return to play (RTP) using isokinetic and isometric testing, and functional strength testing. Recent literature suggests that isokinetic knee extension strength should demonstrate 89% limb symmetry index (LSI) or greater prior to returning to sport. However, there is little known on the effects of strength testing early in the rehabilitation process and the relationship to strength test performance at time of RTP. Purpose: The purpose of this study was to examine how early post-operative strength test performance impacts isokinetic strength outcomes at RTP testing in adolescents. Methods: The retrospective cohort study included patients undergoing primary ACLR between 12 and 18 years of age, early post-operative strength measures, and isokinetic dynamometer strength at RTP from July 2017 and April 2019. Data was dichotomized into desired outcomes at 3 months: >70% isometric knee extension LSI, > 20 repetitions on anterior stepdown test (AST), > 90% LSI Y Balance. At RTP testing, isokinetic knee extension strength data was categorized into >89% LSI at 3 speeds (300, 180, 60°/sec). Chi square testing and odds ratio statistics were used to examine association and its magnitude. Results: 63 patients met inclusion criteria (38 females; 15.37±1.66 years old). >70% LSI isometric knee extension strength at 3 months showed a significant association (Table 2) and demonstrated the strongest odds of having >89% LSI on isokinetic strength tests at all 3 speeds at RTP with 180°/sec being the highest (OR=14.5; 95% CI=4.25,49.43; p= <0.001). Performance on AST showed a significant association (χ2 (1, n=63) = 17.00, p <0.001), and highest odds at 180°/sec (OR=4.61; 95% CI = 1.59, 13.39, p=<0.001) and 60°/sec (OR= 3.07; 95% CI = 1.10, 8.63, p= 0.04). Combination of performance on isometric strength tests and AST showed a significant association to isokinetic strength at all three speeds, but less predictive then isometrics in isolation. (Table 2). There was no significant relationship between YBR LSI at 3 months and isokinetic strength at 6 months. Conclusion: Standardized strength testing early in rehabilitation can help identify patients that will successfully complete RTP testing. Our results suggest that isometric knee extension strength and timed anterior stepdown test provide meaningful clinical information early in the rehabilitation process. This data also suggests that the use of YBAL for predicting isokinetic strength performance is limited. [Table: see text][Table: see text]


2004 ◽  
Vol 97 (5) ◽  
pp. 1693-1701 ◽  
Author(s):  
C. J. de Ruiter ◽  
R. D. Kooistra ◽  
M. I. Paalman ◽  
A. de Haan

We investigated the capacity for torque development and muscle activation at the onset of fast voluntary isometric knee extensions at 30, 60, and 90° knee angle. Experiments were performed in subjects ( n = 7) who had high levels (>90%) of activation at the plateau of maximal voluntary contractions. During maximal electrical nerve stimulation (8 pulses at 300 Hz), the maximal rate of torque development (MRTD) and torque time integral over the first 40 ms (TTI40) changed in proportion with torque at the different knee angles (highest values at 60°). At each knee angle, voluntary MRTD and stimulated MRTD were similar ( P < 0.05), but time to voluntary MRTD was significantly longer. Voluntary TTI40 was independent ( P > 0.05) of knee angle and on average (all subjects and angles) only 40% of stimulated TTI40. However, among subjects, the averaged (across knee angles) values ranged from 10.3 ± 3.1 to 83.3 ± 3.2% and were positively related ( r2 = 0.75, P < 0.05) to the knee-extensor surface EMG at the start of torque development. It was concluded that, although all subjects had high levels of voluntary activation at the plateau of maximal voluntary contraction, among subjects and independent of knee angle, the capacity for fast muscle activation varied substantially. Moreover, in all subjects, torque developed considerably faster during maximal electrical stimulation than during maximal voluntary effort. At different knee angles, stimulated MRTD and TTI40 changed in proportion with stimulated torque, but voluntary MRTD and TTI40 changed less than maximal voluntary torque.


Author(s):  
Muhammad Arsalan Khan ◽  
Wim Ectors ◽  
Tom Bellemans ◽  
Davy Janssens ◽  
Geert Wets

Unmanned aerial vehicles (UAVs), commonly referred to as drones, are one of the most dynamic and multidimensional emerging technologies of the modern era. This technology has recently found multiple potential applications within the transportation field, ranging from traffic surveillance applications to traffic network analysis. To conduct a UAV-based traffic study, extremely diligent planning and execution are required followed by an optimal data analysis and interpretation procedure. In this study, however, the main focus was on the processing and analysis of UAV-acquired traffic footage. A detailed methodological framework for automated UAV video processing is proposed to extract the trajectories of multiple vehicles at a particular road segment. Such trajectories can be used either to extract various traffic parameters or to analyze traffic safety situations. The proposed framework, which provides comprehensive guidelines for an efficient processing and analysis of a UAV-based traffic study, comprises five components: preprocessing, stabilization, georegistration, vehicle detection and tracking, and trajectory management. Until recently, most traffic-focused UAV studies have employed either manual or semiautomatic processing techniques. In contrast, this paper presents an in-depth description of the proposed automated framework followed by a description of a field experiment conducted in the city of Sint-Truiden, Belgium. Future research will mainly focus on the extension of the applications of the proposed framework in the context of UAV-based traffic monitoring and analysis.


Sign in / Sign up

Export Citation Format

Share Document