scholarly journals Nitrate Reductase Inhibition Induces Lipid Enhancement of Dunaliella Tertiolecta for Biodiesel Production

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Redouane Benhima ◽  
Hicham El Arroussi ◽  
Issam M. Kadmiri ◽  
Najib El Mernissi ◽  
Imane Wahby ◽  
...  

Nitrogen stress increases lipids content in microalgae, the main feedstock for algal biodiesel. Sodium tungstate was used in this study to implement nitrogen stress by inhibiting nitrate reductase (NR) in Dunaliella tertiolecta. The reduction of NR activity was accompanied by reduction of chlorophyll and accumulation of lipids. One-stage and two-stage culture strategies were compared. One-stage culture raised total lipids from 18% (control) to 39% (w: w); however, two-stage culture raised lipids to 50% in which neutral lipids were enhanced 2.14 times. To assess the quality of biodiesel produced, fatty acid methyl esters (FAME) composition was studied. It showed a slight variation of unsaturation. In addition, some physical proprieties of biodiesel were estimated and showed that higher heating values were improved by tungstate treatment. In this study, we tried to shed light on some biological impact of NR inhibition in microalgae cells using sodium tungstate which could be exploited in the improvement of biodiesel production.

2018 ◽  
Vol 118 ◽  
pp. 984-992 ◽  
Author(s):  
Lucas A. Martín ◽  
Cecilia A. Popovich ◽  
Ana M. Martínez ◽  
Paola G. Scodelaro Bilbao ◽  
María C. Damiani ◽  
...  

Author(s):  
Maja Galić Perečinec ◽  
Sanja Babić ◽  
Lara Čižmek ◽  
Atiđa Selmani ◽  
Natalija Topić Popović ◽  
...  

2018 ◽  
Vol 85 (4) ◽  
Author(s):  
Ming-Hua Liang ◽  
Lu-Lu Xue ◽  
Jian-Guo Jiang

ABSTRACT Microalgae are promising alternatives for sustainable biodiesel production. Previously, it was found that 100 ppm triethylamine greatly enhanced lipid production and lipid content per cell of Dunaliella tertiolecta by 20% and 80%, respectively. However, triethylamine notably reduced biomass production and pigment contents. In this study, a two-stage cultivation with glycerol and triethylamine was attempted to improve cell biomass and lipid accumulation. At the first stage with 1.0 g/liter glycerol addition, D. tertiolecta cells reached the late log phase in a shorter time due to rapid cell growth, leading to the highest cell biomass (1.296 g/liter) for 16 days. However, the increased glycerol concentrations with glycerol addition decreased the lipid content. At the second-stage cultivation with 100 ppm triethylamine, the highest lipid concentration and lipid weight content were 383.60 mg/liter and 37.7% of dry cell weight (DCW), respectively, in the presence of 1.0 g/liter glycerol, which were 27.36% and 72.51% higher than those of the control group, respectively. Besides, the addition of glycerol alleviated the inhibitory effect of triethylamine on cell morphology, algal growth, and pigment accumulation in D. tertiolecta. The results indicated that two-stage cultivation is a viable way to improve lipid yield in microalgae. IMPORTANCE Microalgae are promising alternatives for sustainable biodiesel production. Two-stage cultivation with glycerol and triethylamine enhanced the lipid productivity of Dunaliella tertiolecta, indicating that two-stage cultivation is an efficient strategy for biodiesel production from microalgae. It was found that glycerol significantly enhanced cell biomass of D. tertiolecta, and the presence of glycerol alleviated the inhibitory effect of triethylamine on algal growth. Glycerol, the major byproduct from biodiesel production, was used for the biomass accumulation of D. tertiolecta at the first stage of cultivation. Triethylamine, as a lipid inducer, was used for lipid accumulation at the second stage of cultivation. Two-stage cultivation with glycerol and triethylamine enhanced lipid productivity and alleviated the inhibitory effect of triethylamine on the algal growth of D. tertiolecta, which is an efficient strategy for lipid production from D. tertiolecta.


2010 ◽  
Vol 30 (S 01) ◽  
pp. S153-S155
Author(s):  
D. Delev ◽  
S. Pahl ◽  
J. Driesen ◽  
H. Brondke ◽  
J. Oldenburg ◽  
...  

1993 ◽  
Vol 69 (02) ◽  
pp. 124-129 ◽  
Author(s):  
Susan Solymoss ◽  
Kim Thi Phu Nguyen

SummaryActivated protein C (APC) is a vitamin K dependent anticoagulant which catalyzes the inactivation of factor Va and VIIIa, in a reaction modulated by phospholipid membrane surface, or blood platelets. APC prevents thrombin generation at a much lower concentration when added to recalcified plasma and phospholipid vesicles, than recalcified plasma and platelets. This observation was attributed to a platelet associated APC inhibitor. We have performed serial thrombin, factor V one stage and two stage assays and Western blotting of dilute recalcified plasma containing either phospholipid vesicles or platelets and APC. More thrombin was formed at a given APC concentration with platelets than phospholipid. One stage factor V values increased to higher levels with platelets and APC than phospholipid and APC. Two stage factor V values decreased substantially with platelets and 5 nM APC but remained unchanged with phospholipid and 5 nM APC. Western blotting of plasma factor V confirmed factor V activation in the presence of platelets and APC, but lack of factor V activation with phospholipid and APC. Inclusion of platelets or platelet membrane with phospholipid enhanced rather than inhibited APC catalyzed plasma factor V inactivation. Platelet activation further enhanced factor V activation and inactivation at any given APC concentration.Plasma thrombin generation in the presence of platelets and APC is related to ongoing factor V activation. No inhibition of APC inactivation of FVa occurs in the presence of platelets.


1967 ◽  
Vol 18 (01/02) ◽  
pp. 198-210 ◽  
Author(s):  
Ronald S Reno ◽  
Walter H Seegers

SummaryA two-stage assay procedure was developed for the determination of the autoprothrombin C titre which can be developed from prothrombin or autoprothrombin III containing solutions. The proenzyme is activated by Russell’s viper venom and the autoprothrombin C activity that appears is measured by its ability to shorten the partial thromboplastin time of bovine plasma.Using the assay, the autoprothrombin C titre was determined in the plasma of several species, as well as the percentage of it remaining in the serum from blood clotted in glass test tubes. Much autoprothrombin III remains in human serum. With sufficient thromboplastin it was completely utilized. Plasma from selected patients with coagulation disorders was assayed and only Stuart plasma was abnormal. In so-called factor VII, IX, and P.T.A. deficiency the autoprothrombin C titre and thrombin titre that could be developed was normal. In one case (prethrombin irregularity) practically no thrombin titre developed but the amount of autoprothrombin C which generated was in the normal range.Dogs were treated with Dicumarol and the autoprothrombin C titre that could be developed from their plasmas decreased until only traces could be detected. This coincided with a lowering of the thrombin titre that could be developed and a prolongation of the one-stage prothrombin time. While the Dicumarol was acting, the dogs were given an infusion of purified bovine prothrombin and the levels of autoprothrombin C, thrombin and one-stage prothrombin time were followed for several hours. The tests became normal immediately after the infusion and then went back to preinfusion levels over a period of 24 hrs.In other dogs the effect of Dicumarol was reversed by giving vitamin K1 intravenously. The effect of the vitamin was noticed as early as 20 min after administration.In response to vitamin K the most pronounced increase was with that portion of the prothrombin molecule which yields thrombin. The proportion of that protein with respect to the precursor of autoprothrombin C increased during the first hour and then started to go down and after 3 hrs was equal to the proportion normally found in plasma.


1983 ◽  
Vol 50 (03) ◽  
pp. 697-702 ◽  
Author(s):  
T W Barrowcliffe ◽  
A D Curtis ◽  
D P Thomas

SummaryAn international collaborative study was carried out to establish a replacement for the current (2nd) international standard for Factor VIII: C, concentrate. Twenty-six laboratories took part, of which 17 performed one-stage assays, three performed two-stage assays and six used both methods. The proposed new standard, an intermediate purity concentrate, was assayed against the current standard, against a high-purity concentrate and against an International Reference Plasma, coded 80/511, previously calibrated against fresh normal plasma.Assays of the proposed new standard against the current standard gave a mean potency of 3.89 iu/ampoule, with good agreement between laboratories and between one-stage and two- stage assays. There was also no difference between assay methods in the comparison of high-purity and intermediate purity concentrates. In the comparison of the proposed standard with the plasma reference preparation, the overall mean potency was 4.03 iu/ampoule, but there were substantial differences between laboratories, and the two-stage method gave significantly higher results than the one stage method. Of the technical variables in the one-stage method, only the activation time with one reagent appeared to have any influence on the results of this comparison of concentrate against plasma.Accelerated degradation studies showed that the proposed standard is very stable. With the agreement of the participants, the material, in ampoules coded 80/556, has been established by the World Health Organization as the 3rd International Standard for Factor VIII :C, Concentrate, with an assigned potency of 3.9 iu/ampoule.


Sign in / Sign up

Export Citation Format

Share Document