scholarly journals Convolution Neural Network Based on Two-Dimensional Spectrum for Hyperspectral Image Classification

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Hongmin Gao ◽  
Shuo Lin ◽  
Yao Yang ◽  
Chenming Li ◽  
Mingxiang Yang

Inherent spectral characteristics of hyperspectral image (HSI) data are determined and need to be deeply mined. A convolution neural network (CNN) model of two-dimensional spectrum (2D spectrum) is proposed based on the advantages of deep learning to extract feature and classify HSI. First of all, the traditional data processing methods which use small area pixel block or one-dimensional spectral vector as input unit bring many heterogeneous noises. The 2D-spectrum image method is proposed to solve the problem and make full use of spectral value and spatial information. Furthermore, a batch normalization algorithm (BN) is introduced to address internal covariate shifts caused by changes in the distribution of input data and expedite the training of the network. Finally, Softmax loss models are proposed to induce competition among the outputs and improve the performance of the CNN model. The HSI datasets of experiments include Indian Pines, Salinas, Kennedy Space Center (KSC), and Botswana. Experimental results show that the overall accuracies of the 2D-spectrum CNN model can reach 98.26%, 97.28%, 96.22%, and 93.64%. These results are higher than the accuracies of other traditional methods described in this paper. The proposed model can achieve high target classification accuracy and efficiency.

2021 ◽  
Vol 12 (1) ◽  
pp. 174
Author(s):  
Byungjin Kang ◽  
Inho Park ◽  
Changmin Ok ◽  
Sungho Kim

Recently, hyperspectral image (HSI) classification using deep learning has been actively studied using 2D and 3D convolution neural networks (CNN). However, they learn spatial information as well as spectral information. These methods can increase the accuracy of classification, but do not only focus on the spectral information, which is a big advantage of HSI. In addition, the 1D-CNN, which learns only pure spectral information, has limitations because it uses adjacent spectral information. In this paper, we propose a One Dimensional Parellel Atrous Convolution Neural Network (ODPA-CNN) that learns not only adjacent spectral information for HSI classification, but also spectral information from a certain distance. It extracts features in parallel to account for bands of varying distances. The proposed method excludes spatial information such as the shape of an object and performs HSI classification only with spectral information about the material of the object. Atrous convolution is not a convolution of adjacent spectral information, but a convolution between spectral information separated by a certain distance. We compare the proposed model with various datasets to the other models. We also test with the data we have taken ourselves. Experimental results show a higher performance than some 3D-CNN models and other 1D-CNN methods. In addition, using datasets to which random space is applied, the vulnerabilities of 3D-CNN are identified, and the proposed model is shown to be robust to datasets with little spatial information.


Author(s):  
Dexiang Zhang ◽  
Jingzhong Kang ◽  
Lina Xun ◽  
Yu Huang

In recent years, deep learning has been widely used in the classification of hyperspectral images and good results have been achieved. But it is easy to ignore the edge information of the image when using the spatial features of hyperspectral images to carry out the classification experiments. In order to make full use of the advantages of convolution neural network (CNN), we extract the spatial information with the method of minimum noise fraction (MNF) and the edge information by bilateral filter. The combination of the two kinds of information not only increases the useful information but also effectively removes part of the noise. The convolution neural network is used to extract features and classify for hyperspectral images on the basis of this fused information. In addition, this paper also uses another kind of edge-filtering method to amend the final classification results for a better accuracy. The proposed method was tested on three public available data sets: the University of Pavia, the Salinas, and the Indian Pines. The competitive results indicate that our approach can realize a classification of different ground targets with a very high accuracy.


2021 ◽  
Vol 13 (5) ◽  
pp. 895
Author(s):  
Tianming Zhan ◽  
Bo Song ◽  
Yang Xu ◽  
Minghua Wan ◽  
Xin Wang ◽  
...  

In this paper, a spectral-spatial convolution neural network with Siamese architecture (SSCNN-S) for hyperspectral image (HSI) change detection (CD) is proposed. First, tensors are extracted in two HSIs recorded at different time points separately and tensor pairs are constructed. The tensor pairs are then incorporated into the spectral-spatial network to obtain two spectral-spatial vectors. Thereafter, the Euclidean distances of the two spectral-spatial vectors are calculated to represent the similarity of the tensor pairs. We use a Siamese network based on contrastive loss to train and optimize the network so that the Euclidean distance output by the network describes the similarity of tensor pairs as accurately as possible. Finally, the values obtained by inputting all tensor pairs into the trained model are used to judge whether a pixel belongs to the change area. SSCNN-S aims to transform the problem of HSI CD into a problem of similarity measurement for tensor pairs by introducing the Siamese network. The network used to extract tensor features in SSCNN-S combines spectral and spatial information to reduce the impact of noise on CD. Additionally, a useful four-test scoring method is proposed to improve the experimental efficiency instead of taking the mean value from multiple measurements. Experiments on real data sets have demonstrated the validity of the SSCNN-S method.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yu Wang ◽  
Xiaofei Wang ◽  
Junfan Jian

Landslides are a type of frequent and widespread natural disaster. It is of great significance to extract location information from the landslide in time. At present, most articles still select single band or RGB bands as the feature for landslide recognition. To improve the efficiency of landslide recognition, this study proposed a remote sensing recognition method based on the convolutional neural network of the mixed spectral characteristics. Firstly, this paper tried to add NDVI (normalized difference vegetation index) and NIRS (near-infrared spectroscopy) to enhance the features. Then, remote sensing images (predisaster and postdisaster images) with same spatial information but different time series information regarding landslide are taken directly from GF-1 satellite as input images. By combining the 4 bands (red + green + blue + near-infrared) of the prelandslide remote sensing images with the 4 bands of the postlandslide images and NDVI images, images with 9 bands were obtained, and the band values reflecting the changing characteristics of the landslide were determined. Finally, a deep learning convolutional neural network (CNN) was introduced to solve the problem. The proposed method was tested and verified with remote sensing data from the 2015 large-scale landslide event in Shanxi, China, and 2016 large-scale landslide event in Fujian, China. The results showed that the accuracy of the method was high. Compared with the traditional methods, the recognition efficiency was improved, proving the effectiveness and feasibility of the method.


LWT ◽  
2020 ◽  
Vol 132 ◽  
pp. 109815
Author(s):  
Ziwei Liu ◽  
Jinbao Jiang ◽  
Xiaojun Qiao ◽  
Xiaotong Qi ◽  
Yingyang Pan ◽  
...  

2019 ◽  
Vol 9 (22) ◽  
pp. 4890 ◽  
Author(s):  
Zong-Yue Wang ◽  
Qi-Ming Xia ◽  
Jing-Wen Yan ◽  
Shu-Qi Xuan ◽  
Jin-He Su ◽  
...  

Hyperspectral imaging (HSI) contains abundant spectrums as well as spatial information, providing a great basis for classification in the field of remote sensing. In this paper, to make full use of HSI information, we combined spectral and spatial information into a two-dimension image in a particular order by extracting a data cube and unfolding it. Prior to the step of combining, principle component analysis (PCA) is utilized to decrease the dimensions of HSI so as to reduce computational cost. Moreover, the classification block used during the experiment is a convolutional neural network (CNN). Instead of using traditionally fixed-size kernels in CNN, we leverage a multi-scale kernel in the first convolutional layer so that it can scale to the receptive field. To attain higher classification accuracy with deeper layers, residual blocks are also applied to the network. Extensive experiments on the datasets from Pavia University and Salinas demonstrate that the proposed method significantly improves the accuracy in HSI classification.


2019 ◽  
Vol 11 (8) ◽  
pp. 963 ◽  
Author(s):  
Xiaoguang Mei ◽  
Erting Pan ◽  
Yong Ma ◽  
Xiaobing Dai ◽  
Jun Huang ◽  
...  

Many deep learning models, such as convolutional neural network (CNN) and recurrent neural network (RNN), have been successfully applied to extracting deep features for hyperspectral tasks. Hyperspectral image classification allows distinguishing the characterization of land covers by utilizing their abundant information. Motivated by the attention mechanism of the human visual system, in this study, we propose a spectral-spatial attention network for hyperspectral image classification. In our method, RNN with attention can learn inner spectral correlations within a continuous spectrum, while CNN with attention is designed to focus on saliency features and spatial relevance between neighboring pixels in the spatial dimension. Experimental results demonstrate that our method can fully utilize the spectral and spatial information to obtain competitive performance.


Sign in / Sign up

Export Citation Format

Share Document