scholarly journals Combined Use of GF-3 and Landsat-8 Satellite Data for Soil Moisture Retrieval over Agricultural Areas Using Artificial Neural Network

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Qingyan Meng ◽  
Linlin Zhang ◽  
Qiuxia Xie ◽  
Shun Yao ◽  
Xu Chen ◽  
...  

Soil moisture is the basic condition required for crop growth and development. Gaofen-3 (GF-3) is the first C-band synthetic-aperture radar (SAR) satellite of China, offering broad land and ocean imaging applications, including soil moisture monitoring. This study developed an approach to estimate soil moisture in agricultural areas from GF-3 data. An inversion technique based on an artificial neural network (ANN) is introduced. The neural network was trained and tested on a training sample dataset generated from the Advanced Integral Equation Model. Incidence angle and HH or VV polarization data were used as input variables of the ANN, with soil moisture content (SMC) and surface roughness as the output variables. The backscattering contribution from the vegetation was eliminated using the water cloud model (WCM). The acquired soil backscattering coefficients of GF-3 and in situ measurement data were used to validate the SMC estimation algorithm, which achieved satisfactory results (R2 = 0.736; RMSE = 0.042). These results highlight the contribution of the combined use of the GF-3 synthetic-aperture radar and Landsat-8 images based on an ANN method for improving SMC estimates and supporting hydrological studies.

Author(s):  
Khwairakpam Amitab ◽  
Debdatta Kandar ◽  
Arnab K. Maji

Synthetic Aperture Radar (SAR) are imaging Radar, it uses electromagnetic radiation to illuminate the scanned surface and produce high resolution images in all-weather condition, day and night. Interference of signals causes noise and degrades the quality of the image, it causes serious difficulty in analyzing the images. Speckle is multiplicative noise that inherently exist in SAR images. Artificial Neural Network (ANN) have the capability of learning and is gaining popularity in SAR image processing. Multi-Layer Perceptron (MLP) is a feed forward artificial neural network model that consists of an input layer, several hidden layers, and an output layer. We have simulated MLP with two hidden layer in Matlab. Speckle noises were added to the target SAR image and applied MLP for speckle noise reduction. It is found that speckle noise in SAR images can be reduced by using MLP. We have considered Log-sigmoid, Tan-Sigmoid and Linear Transfer Function for the hidden layers. The MLP network are trained using Gradient descent with momentum back propagation, Resilient back propagation and Levenberg-Marquardt back propagation and comparatively evaluated the performance.


Author(s):  
Khwairakpam Amitab ◽  
Debdatta Kandar ◽  
Arnab K. Maji

Synthetic Aperture Radar (SAR) are imaging Radar, it uses electromagnetic radiation to illuminate the scanned surface and produce high resolution images in all-weather condition, day and night. Interference of signals causes noise and degrades the quality of the image, it causes serious difficulty in analyzing the images. Speckle is multiplicative noise that inherently exist in SAR images. Artificial Neural Network (ANN) have the capability of learning and is gaining popularity in SAR image processing. Multi-Layer Perceptron (MLP) is a feed forward artificial neural network model that consists of an input layer, several hidden layers, and an output layer. We have simulated MLP with two hidden layer in Matlab. Speckle noises were added to the target SAR image and applied MLP for speckle noise reduction. It is found that speckle noise in SAR images can be reduced by using MLP. We have considered Log-sigmoid, Tan-Sigmoid and Linear Transfer Function for the hidden layers. The MLP network are trained using Gradient descent with momentum back propagation, Resilient back propagation and Levenberg-Marquardt back propagation and comparatively evaluated the performance.


2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2021 ◽  
Author(s):  
Ju Hyoung Lee ◽  
Notarnicola Claudia ◽  
Jeff Walker

<p>To estimate surface soil moisture from Sentinel-1 backscattering, accurate estimation of soil roughness is a key. However, it is usually error source, due to complexity of surface heterogeneity. This study investigates the fractal methods that takes multi-scale roughness into account. Fractal models are widely recognized as one of the best approaches to depict soil roughness of natural system. Unlike the conventional approach of fractal method that uses local roughness measured in the field or Digital Elevation Model information seldom considering a stochastic characteristic of soil surface, fractal surface is generated with the roughness spatially inverted from Synthetic Aperture Radar (SAR) backscatter. Assuming that the land surface in study site is on small to intermediate scales, pseudo-roughness is spatially estimated by modelling SAR roughness with the one-sided power-law spectrum. In addition, it is assumed that both multiple and single scales of roughness affect SAR backscatter in an integrative way. For validation, soil moisture is retrieved with this time-varying roughness. Based upon local validation and cost minimization, as compared with an inversion approach of surface scattering models (Integral Equation Model), a fractal method seems geometrically more sensible than an inversion, based upon a spatial distribution and a priori knowledge in the field. Although inverted roughness is used as an input, fractal model does not reproduce the same roughness. Results will show local point validation, fractal surface, and estimation of coefficients, and various spatial distribution data. This study will be useful for future satellite missions such as NASA-ISRO SAR mission.</p>


Sign in / Sign up

Export Citation Format

Share Document