scholarly journals Propagation Properties of Airy Beam through Periodic Slab System with Negative Index Materials

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Long Jin ◽  
Xingqiang Zhang

Based on light transfer matrix and electric field vector equation, the evolution of Airy beam propagating in periodic slab system with three negative index materials (NIMs) and its transmission mechanism are investigated. The intensity profiles on emergent surface of periodic slab system and side view of Airy beam propagating in each right handed material (RHM) and double negative material (DNM) unit including lossless and losses DNMs are discussed. It is revealed that the self-recovery Airy beam can be achieved in long distance by using lossless periodic slab system as long as the negative refractive index nl=-nr and each unit length L=Z. As to losses slab system contained DNMs, the smaller the collision frequencies are, the better the Airy beam quality is formed. It is expected that the proposed manner of beam transmission and corresponding conclusions can be useful for extension applications of optical control, especially for optical communication and optical encryption technique.

MRS Bulletin ◽  
2008 ◽  
Vol 33 (10) ◽  
pp. 907-914 ◽  
Author(s):  
Wounjhang Park ◽  
Jinsang Kim

AbstractIndex of refraction, a fundamental optical constant that enters in the descriptions of almost all optical phenomena, has long been considered an intrinsic property of a material. However, the recent progress in negative-index material (NIM) research has shown that the utilization of deep-subwavelength-scale features can provide a means to engineer fundamental optical constants such as permittivity, permeability, impedance, and index of refraction. Armed with new nanofabrication techniques, researchers worldwide have developed and demonstrated a variety of NIMs. One implementation uses a combination of electric and magnetic resonators that simultaneously produce negative permittivity and permeability, and consequently negative refractive index. Others involve chirality, anisotropy, or Bragg resonance in periodic structures. NIM research is the beginning of new optical materials research in which the desired optical properties and functionalities are artificially generated. Clearly, creating negative index materials is not the only possibility, and the most recent developments explore new realms of materials with near-zero indexes and inhomogeneous index profiles that can produce novel phenomena such as invisibility. Furthermore, the concept of controlling macroscopic material properties with a composite structure containing subwavelength-scale features extends to the development of acoustic metamaterials. By providing a review of recent progress in NIM research, we hope to share the excitement of the field with the broader materials research community and also to spur new ideas and research directions.


2006 ◽  
Vol 919 ◽  
Author(s):  
Valerie Browning ◽  
Minas H Tanielian ◽  
Richard W. Ziolkowski ◽  
Nader Engheta ◽  
David R. Smith

AbstractIn the quest for ever smaller, lighter weight, and conformal components and devices for radar and communication applications, researchers in the RF community have increasingly turned to artificially engineered, composite structures (or “metamaterials”) in order to exploit the extraordinary electromagnetic response these materials offer. One particularly promising class of metamaterials that has recently received a great deal of attention are “left-handed” or negative index materials. Because these metamaterials exhibit the unique ability to bend and focus light in ways no other conventional materials can, they hold great potential for enabling a number of innovative lens and antenna structures for a broad range of commercial and DoD relevant applications. Exploring the possible implementation of negative index materials for such applications will require significant enhancements in the properties of existing Negative Index Materials (NIM) (bandwidth, loss, operational frequency, etc.), as well as improved understanding of the physics of their electromagnetic transport properties. For this reason the Defense Advanced Research Project Agency (DARPA) has initiated a program that seeks to further develop and demonstrate NIM for future DoD missions including, but not limited to, the following: 1) lightweight, compact lenses with improved optics; 2) sub wavelength/high resolution imaging across the electromagnetic spectrum; 3) novel approaches to beam steering for radar, RF, and/or optical communications; and 4) novel approaches for integrating optics with semiconductor electronics. A brief overview of the salient properties of NIM will be presented as well as a general discussion of a few of their potential applications.


2005 ◽  
Vol 87 (26) ◽  
pp. 261921 ◽  
Author(s):  
Mark Bloemer ◽  
Giuseppe D’Aguanno ◽  
Michael Scalora ◽  
Nadia Mattiucci

2011 ◽  
Vol 35 ◽  
pp. 133-149 ◽  
Author(s):  
Hector Kinto-Ramírez ◽  
M. A. Palomino-Ovando ◽  
F. Ramos-Mendieta

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5335
Author(s):  
Muhammad Bilal Riaz ◽  
Jan Awrejcewicz ◽  
Adil Jhangeer

In this article, we explore solitary wave structures in nonlinear negative-index materials with beta and M-truncated fractional derivatives with the existence of a Bohm potential. The consideration of Bohm potential produced quantum phase behavior in electromagnetic waves. The applied technique is the New extended algebraic method. By use of this approach, acquired solutions convey various types of new families containing dark, dark-singular, dark-bright, and singular solutions of Type 1 and 2. Moreover, the constraint conditions for the presence of the obtained solutions are a side-effect of this technique. Finally, graphical structures are depicted.


Sign in / Sign up

Export Citation Format

Share Document