scholarly journals Negative-Index Materials: Optics by Design

MRS Bulletin ◽  
2008 ◽  
Vol 33 (10) ◽  
pp. 907-914 ◽  
Author(s):  
Wounjhang Park ◽  
Jinsang Kim

AbstractIndex of refraction, a fundamental optical constant that enters in the descriptions of almost all optical phenomena, has long been considered an intrinsic property of a material. However, the recent progress in negative-index material (NIM) research has shown that the utilization of deep-subwavelength-scale features can provide a means to engineer fundamental optical constants such as permittivity, permeability, impedance, and index of refraction. Armed with new nanofabrication techniques, researchers worldwide have developed and demonstrated a variety of NIMs. One implementation uses a combination of electric and magnetic resonators that simultaneously produce negative permittivity and permeability, and consequently negative refractive index. Others involve chirality, anisotropy, or Bragg resonance in periodic structures. NIM research is the beginning of new optical materials research in which the desired optical properties and functionalities are artificially generated. Clearly, creating negative index materials is not the only possibility, and the most recent developments explore new realms of materials with near-zero indexes and inhomogeneous index profiles that can produce novel phenomena such as invisibility. Furthermore, the concept of controlling macroscopic material properties with a composite structure containing subwavelength-scale features extends to the development of acoustic metamaterials. By providing a review of recent progress in NIM research, we hope to share the excitement of the field with the broader materials research community and also to spur new ideas and research directions.

2006 ◽  
Vol 3 (2) ◽  
pp. 189-218 ◽  
Author(s):  
Victor Veselago ◽  
Leonid Braginsky ◽  
Valery Shklover ◽  
Christian Hafner

The main directions of studies of materials with negative index of refraction, also called left-handed or metamaterials, are reviewed. First, the physics of the phenomenon of negative refraction and the history of this scientific branch are outlined. Then recent results of studies of photonic crystals that exhibit negative refraction are discussed. In the third part numerical methods for the simulation of negative index material configurations and of metamaterials that exhibit negative index properties are presented. The advantages and the shortages of existing computer packages are analyzed. Finally, details of the fabrication of different kinds of metamaterials are given. This includes composite metamaterials, photonic crystals, and transmission line metamaterials for different wavelengths namely radio frequencies, microwaves, terahertz, infrared, and visible light. Furthermore, some examples of practical applications of metamaterials are presented.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Long Jin ◽  
Xingqiang Zhang

Based on light transfer matrix and electric field vector equation, the evolution of Airy beam propagating in periodic slab system with three negative index materials (NIMs) and its transmission mechanism are investigated. The intensity profiles on emergent surface of periodic slab system and side view of Airy beam propagating in each right handed material (RHM) and double negative material (DNM) unit including lossless and losses DNMs are discussed. It is revealed that the self-recovery Airy beam can be achieved in long distance by using lossless periodic slab system as long as the negative refractive index nl=-nr and each unit length L=Z. As to losses slab system contained DNMs, the smaller the collision frequencies are, the better the Airy beam quality is formed. It is expected that the proposed manner of beam transmission and corresponding conclusions can be useful for extension applications of optical control, especially for optical communication and optical encryption technique.


2021 ◽  
Author(s):  
Lezheng Fang ◽  
Michael J. Leamy

Abstract Acoustic metamaterials achieving negative index refraction usually operate linearly over a narrowband of frequency and consist of complex unit cell structures incorporating resonators. In this paper, we propose and analyze a simple, non-resonant, nonlinear rotator lattice structure which can be configured with either a positive or negative index of refraction over a broadband frequency range. The system’s frequency-dependent transmission is studied analytically via a reduced model along the interface of positive and negative refractive index lattices. Results for energy transmission are compared to those obtained using direct numerical simulation and close agreement is documented for small amplitude waves. For larger amplitude waves, a multiple scales analysis approach is used to show that the nonlinearity of the lattice shifts the system’s band structure, inducing amplitude-dependent transmission. For the studied system, the transmission decreases as we increase the incident wave amplitude, agreeing qualitatively with results from direct numerical simulation. At large-enough amplitudes, near the interface the wave amplitude decreases rapidly. As the wave travels further into the media, the amplitude drops, causing the nonlinear effect to decline as well. This decaying envelope does not result in a zero transmission in the far field, as expected from linear theory, and instead, the nonlinearity of the proposed rotator lattice prevents the far-field transmitted wave from surpassing a specific threshold amplitude, regardless of the incident wave. This finding may serve as an inspiration for designing nonlinear wave saturators.


2009 ◽  
Vol 1 (6) ◽  
pp. 521-527 ◽  
Author(s):  
Shah Nawaz Burokur ◽  
André de Lustrac

Metamaterials made of exclusively metallic cut wire pairs have been experimentally demonstrated to exhibit a negative refractive index at optical frequencies. However, other related works on slightly different wire and plate pairs have not shown a negative index. In this paper, we present the analogy between previously reported S-shaped metamaterials and asymmetric cut wire pairs by a simple unifying approach. These two structures present a negative index for some geometrical configurations. Using simulations and experimental measurements in the microwave domain, we investigate the material properties of the last structure. Applying the inversion method from transmission and reflection responses, we show that a negative index is exhibited due to simultaneous negative permittivity ε and permeability μ. A negative index n is experimentally verified in a bulk prism engineered by stacking several layers of the metamaterial.


2013 ◽  
Vol 4 ◽  
pp. 18-26 ◽  
Author(s):  
Harihar Paudyal ◽  
Manoj Johrib ◽  
Akhilesh Tiwari

Last decade has been increasing interest in metamaterial research, however metamaterials are sometimes regarded as left handed materials (LHM) or negative index materials but the recent progress in the field has shown that metamaterials are far beyond LHMs. In this paper we provide further advancement in the field of structured electromagnetic from LHM to invisible cloak.The Himalayan Physics Vol. 4, No. 4, 2013 Page: 18-26 Uploaded date: 12/22/2013 


2006 ◽  
Vol 919 ◽  
Author(s):  
Valerie Browning ◽  
Minas H Tanielian ◽  
Richard W. Ziolkowski ◽  
Nader Engheta ◽  
David R. Smith

AbstractIn the quest for ever smaller, lighter weight, and conformal components and devices for radar and communication applications, researchers in the RF community have increasingly turned to artificially engineered, composite structures (or “metamaterials”) in order to exploit the extraordinary electromagnetic response these materials offer. One particularly promising class of metamaterials that has recently received a great deal of attention are “left-handed” or negative index materials. Because these metamaterials exhibit the unique ability to bend and focus light in ways no other conventional materials can, they hold great potential for enabling a number of innovative lens and antenna structures for a broad range of commercial and DoD relevant applications. Exploring the possible implementation of negative index materials for such applications will require significant enhancements in the properties of existing Negative Index Materials (NIM) (bandwidth, loss, operational frequency, etc.), as well as improved understanding of the physics of their electromagnetic transport properties. For this reason the Defense Advanced Research Project Agency (DARPA) has initiated a program that seeks to further develop and demonstrate NIM for future DoD missions including, but not limited to, the following: 1) lightweight, compact lenses with improved optics; 2) sub wavelength/high resolution imaging across the electromagnetic spectrum; 3) novel approaches to beam steering for radar, RF, and/or optical communications; and 4) novel approaches for integrating optics with semiconductor electronics. A brief overview of the salient properties of NIM will be presented as well as a general discussion of a few of their potential applications.


Sign in / Sign up

Export Citation Format

Share Document