scholarly journals Biological Nitrogen Fixation by Local and Improved Genotypes of Cowpea in Burkina Faso (West Africa): Total Nitrogen Accumulated can be used for Quick Estimation

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Boubié Vincent Bado ◽  
Michel Sedogo ◽  
François Lompo ◽  
Sanoussi Manzo Maman Laminou

Biological nitrogen fixation (BNF) by legumes is an indicator of their potential contribution to recycling nitrogen in cropping systems. Many techniques exist for the quantitative measurement of legume BNF. The isotopic dilution (ID) methods are the most accurate but are too expensive, time-consuming and require technical expertise. There is a gap between the simple but less accurate Total Nitrogen Difference (TND) method and the Isotopic Dilution (ID) methods. By measuring the BNF of 11 cowpea (Vigna unguiculata) genotypes, this study aimed to develop a simple model as an improved tool for the quick estimation of BNF. Total N accumulated by traditional genotypes from Burkina Faso varied from 23 to 41 kg ha−1. Approximately 40 to 65% of this was nitrogen derived from the atmosphere (Ndfa) when the TND method was used (Ndfa-TND), while the ID method indicated that 29 to 37% of N accumulated was derived from the atmosphere (Ndfa-ID). The TND method overestimated the BNF of high N-yielding genotypes but underestimated the BNF of low N-yielding genotypes (N-accumulated below 31 kg N ha−1). The relationship between N-accumulated and Ndfa-ID was described by a polynomial regression: Yi = 0.0127 Xi2 - 0.5354 Xi + 17.44, where Yi and Xi represent Ndfa-ID and N-accumulated, respectively (P<0.05, R2 =0.92). The model was validated and could be used for quick estimation of BNF directly from the N accumulated.

2020 ◽  
Vol 12 (16) ◽  
pp. 6449 ◽  
Author(s):  
Shimbahri Mesfin ◽  
Girmay Gebresamuel ◽  
Mitiku Haile ◽  
Amanuel Zenebe ◽  
Girma Desta

Farmers in Northern Ethiopia integrate legumes in their cropping systems to improve soil fertility. However, biological nitrogen fixation (BNF) potentials of different legumes and their mineral nitrogen (N) and phosphorus (P) demands for optimum BNF and yields are less studied. This study aimed to generate the necessary knowledge to enable development of informed nutrient management recommendations, guide governmental public policy and assist farmer decision making. The experiment was conducted at farmers’ fields with four N levels, three P levels, and three replications. Nodule number and dry biomass per plant were assessed. Nitrogen difference method was used to estimate the amount of fixed N by assuming legume BNF was responsible for differences in plant N and soil mineral N measured between legume treatments and wheat. The result revealed that the highest grain yields of faba bean (2531 kg ha−1), field pea (2493 kg ha−1) and dekeko (1694 kg ha−1) were recorded with the combined application of 20 kg N ha−1 and 20 kg P ha−1. Faba bean, field pea and dekeko also fixed 97, 38 and 49 kg N ha−1, respectively, with the combined application of 20 kg N ha−1 and 20 kg P ha−1; however, lentil fixed 20 kg ha−1 with the combined application of 10 kg N ha−1 and 10 kg P ha−1. The average BNF of legumes in the average of all N and P interaction rates were 67, 23, 32 and 16 kg N ha−1 for faba bean, field pea, dekeko and lentil, respectively. Moreover, faba bean, field pea, dekeko and lentil accumulated a surplus soil N of 37, 21, 26 and 13 kg ha−1, respectively, over the wheat plot. The application of 20 kg N ha−1 and 20 kg P ha−1 levels alone and combined significantly (p < 0.05) increased the nodulation, BNF and yield of legumes; however, 46 kg N ha-1 significantly decreased BNF. This indicated that the combination of 20 kg N ha−1 and 20 kg P ha−1 levels is what mineral fertilizer demands to optimize the BNF and yield of legumes. The results of this study can lead to the development of policy and farmer guidelines, as intensification of the use of legumes supplied with starter N and P fertilizers in Northern Ethiopian cropping systems has the multiple benefits of enhancing inputs of fixed N, improving the soil N status for following crops, and becoming a sustainable option for sustainable soil fertility management practice.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ambreen Shah

Intensive use of mineral N fertilizers and organic amendments has resulted in higher N2O emissions. A growing worldwide concern for these problems has motivated researchers, environmentalists, and policy makers to find alternatives to overcome such losses. Biological nitrogen fixation is one of many natural biological approaches to minimize the use of fertilizers and to possibly reduce N2O emissions. A greenhouse study was performed by growing inoculated and noninoculated soybean seeds (Glycine max (L.) Merr.) in PVC columns. The objective was to measure the contribution ofBradyrhizobium Japonicumand mineral-N fertilizer to promoting N2O emission. A closed chamber technique was used for gas sampling. N2O measurements were carried out shortly after nodulation.Bradyrhizobium Jopanicuminduced N2O cumulative (121.8 μg kg−1) fluxes of inoculated seeds was significantly (α= 0.05) higher than those of mineral N fertilized treatment (NIS) and the control (bare soil). Total nitrogen content of the roots and seeds was not affected by inoculation. Total carbon ( 42.1  ±  0.1%), total nitrogen (3.1  ±  0.1%), and crude protein (19.9  ±   0.7%) contents of leaves of the inoculated seeds were significantly higher than those of noninoculated seed treatments. N2O fluxes significantly increased with high dissolved organic carbon content (70.77  ±  3.99  mg L−1) at R3 and at R8 stages whenNO3-(39.60  ±  0.94 mg L−1) concentrations were high.


1992 ◽  
Vol 141 (1-2) ◽  
pp. 155-175 ◽  
Author(s):  
K. Fujita ◽  
K. G. Ofosu-Budu ◽  
S. Ogata

2021 ◽  
Vol 9 (1) ◽  
pp. 125
Author(s):  
Ravinder K. Goyal ◽  
Maria Augusta Schmidt ◽  
Michael F. Hynes

The contribution of biological nitrogen fixation to the total N requirement of food and feed crops diminished in importance with the advent of synthetic N fertilizers, which fueled the “green revolution”. Despite being environmentally unfriendly, the synthetic versions gained prominence primarily due to their low cost, and the fact that most important staple crops never evolved symbiotic associations with bacteria. In the recent past, advances in our knowledge of symbiosis and nitrogen fixation and the development and application of recombinant DNA technology have created opportunities that could help increase the share of symbiotically-driven nitrogen in global consumption. With the availability of molecular biology tools, rapid improvements in symbiotic characteristics of rhizobial strains became possible. Further, the technology allowed probing the possibility of establishing a symbiotic dialogue between rhizobia and cereals. Because the evolutionary process did not forge a symbiotic relationship with the latter, the potential of molecular manipulations has been tested to incorporate a functional mechanism of nitrogen reduction independent of microbes. In this review, we discuss various strategies applied to improve rhizobial strains for higher nitrogen fixation efficiency, more competitiveness and enhanced fitness under unfavorable environments. The challenges and progress made towards nitrogen self-sufficiency of cereals are also reviewed. An approach to integrate the genetically modified elite rhizobia strains in crop production systems is highlighted.


2001 ◽  
Vol 41 (3) ◽  
pp. 447 ◽  
Author(s):  
I. R. Kennedy ◽  
N. Islam

Significant levels of biological nitrogen fixation from sources other than nodulated legumes have become a tantalizing prospect for decades. Since the benefit to agriculture of nitrogen fixation from nodulated legumes was established, there have been widespread efforts to promote the use of various asymbiotic diazotrophic bacteria to fix extra nitrogen in soil. Despite much optimism by scientists and farmers, this prospect remains to be realised. Recently, the prospect has been pursued with renewed enthusiasm and several commercialised products have appeared. What are the reasons for this fresh enthusiasm? Are the new products based on realistic assessments of their biological potential? Why has it taken so long to advance to a stage where there is still only limited evidence that verifies hope becoming reality? This review assesses the current contribution from asymbiotic nitrogen fixation and re-assesses the prospects for greater contributions from this source. Among the many aspects of this multi-faceted subject that will be considered are: (i) the range of free-living microbial strains currently contributing to signficant asymbiotic nitrogen fixation; (ii) the significance of nitrogen-fixing microbes naturally associated with plants; (iii) the significance of endophytic systems and their role in sugarcane and other Gramineae; (iv) the possibility of extending this range by introducing new strains or discovering new systems capable of contributing additional nitrogen fixation. The case will be made that conditions providing a sustainable contribution for more than a short time are usually missing in such systems so that spontaneous biological nitrogen fixation is usually transient. It will be argued further that if all the positive factors controlling spontaneity at the biothermodynamic level are exploited, significant biological nitrogen fixation may soon be achieved in some of these systems on farms.


Sign in / Sign up

Export Citation Format

Share Document