scholarly journals Some Topological Properties of Fuzzy Antinormed Linear Spaces

2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Ljubiša D. R. Kočinac

The definition of fuzzy antinorm is modified. Some topological properties of finite dimensional fuzzy antinormed linear space are studied. Fuzzy anticonvergence and statistical fuzzy anticonvergence are defined and their properties are studied. We also discuss some boundedness properties in fuzzy antinormed linear spaces.

2012 ◽  
Vol 45 (4) ◽  
Author(s):  
Bivas Dinda ◽  
T. K. Samanta ◽  
Iqbal H. Jebril

AbstractIn this paper the definition of fuzzy antinorm is modified. Some properties of finite dimensional fuzzy antinormed linear space are studied. Fuzzy


Filomat ◽  
2016 ◽  
Vol 30 (13) ◽  
pp. 3411-3414 ◽  
Author(s):  
J.F. Peters

This article introduces convex sets in finite-dimensional normed linear spaces equipped with a proximal relator. A proximal relator is a nonvoid family of proximity relations R? (called a proximal relator) on a nonempty set. A normed linear space endowed with R? is an extension of the Sz?z relator space. This leads to a basis for the study of the nearness of convex sets in proximal linear spaces.


2021 ◽  
Vol 7 (1) ◽  
pp. 81
Author(s):  
Madhu Ram

In this paper, we introduce the notion of nearly topological linear spaces and use it to formulate an alternative definition of the Hahn–Banach separation theorem. We also give an example of a topological linear space to which the result is not valid. It is shown that \(\mathbb{R}\) with its ordinary topology is not a nearly topological linear space.


1964 ◽  
Vol 60 (4) ◽  
pp. 817-819 ◽  
Author(s):  
D. J. H. Garling

It follows from the Krein-Milman theorem that (c0) is not isomorphic to the dual of a Banach space. Using a technique due to Banach ((4), page 194) we shall extend this result to show that if a subspace of (c0) is isomorphic to the dual of a normed linear space, then it is finite dimensional (Proposition 1). Using this result, we shall show that if E is a normed linear space, the unit ball of which is contained in the closed absolutely convex cover of a weak Cauchy sequence, then Eis finite dimensional (Proposition 2). This result has applications to the Banach-Dieudonné theorem, and to the theory of two-norm spaces.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 149-167 ◽  
Author(s):  
Andrea Prunotto ◽  
Wanda Maria Alberico ◽  
Piotr Czerski

Abstract The rooted maps theory, a branch of the theory of homology, is shown to be a powerful tool for investigating the topological properties of Feynman diagrams, related to the single particle propagator in the quantum many-body systems. The numerical correspondence between the number of this class of Feynman diagrams as a function of perturbative order and the number of rooted maps as a function of the number of edges is studied. A graphical procedure to associate Feynman diagrams and rooted maps is then stated. Finally, starting from rooted maps principles, an original definition of the genus of a Feynman diagram, which totally differs from the usual one, is given.


2011 ◽  
Vol 54 (4) ◽  
pp. 726-738
Author(s):  
M. I. Ostrovskii

AbstractLet BY denote the unit ball of a normed linear space Y. A symmetric, bounded, closed, convex set A in a finite dimensional normed linear space X is called a sufficient enlargement for X if, for an arbitrary isometric embedding of X into a Banach space Y, there exists a linear projection P: Y → X such that P(BY ) ⊂ A. Each finite dimensional normed space has a minimal-volume sufficient enlargement that is a parallelepiped; some spaces have “exotic” minimal-volume sufficient enlargements. The main result of the paper is a characterization of spaces having “exotic” minimal-volume sufficient enlargements in terms of Auerbach bases.


2005 ◽  
Vol 72 (1) ◽  
pp. 17-30
Author(s):  
Rainer Löwen ◽  
Burkard Polster

We show that the continuity properties of a stable plane are automatically satisfied if we have a linear space with point set a Moebius strip, provided that the lines are closed subsets homeomorphic to the real line or to the circle. In other words, existence of a unique line joining two distinct points implies continuity of join and intersection. For linear spaces with an open disk as point set, the same result was proved by Skornyakov.


2017 ◽  
Vol 20 (K2) ◽  
pp. 107-116
Author(s):  
Diem Thi Hong Huynh

We show first the definition of variational convergence of unifunctions and their basic variational properties. In the next section, we extend this variational convergence definition in case the functions which are defined on product two sets (bifunctions or bicomponent functions). We present the definition of variational convergence of bifunctions, icluding epi/hypo convergence, minsuplop convergnece and maxinf-lop convergence, defined on metric spaces. Its variational properties are also considered. In this paper, we concern on the properties of epi/hypo convergence to apply these results on optimization proplems in two last sections. Next we move on to the main results that are approximations of typical and important optimization related problems on metric space in terms of the types of variational convergence are equilibrium problems, and multiobjective optimization. When we applied to the finite dimensional case, some of our results improve known one.


Author(s):  
Angelo Bianchi ◽  
Samuel Chamberlin

We investigate the representations of the hyperalgebras associated to the map algebras [Formula: see text], where [Formula: see text] is any finite-dimensional complex simple Lie algebra and [Formula: see text] is any associative commutative unitary algebra with a multiplicatively closed basis. We consider the natural definition of the local and global Weyl modules, and the Weyl functor for these algebras. Under certain conditions, we prove that these modules satisfy certain universal properties, and we also give conditions for the local or global Weyl modules to be finite-dimensional or finitely generated, respectively.


Sign in / Sign up

Export Citation Format

Share Document