scholarly journals Some Improved q-Rung Orthopair Fuzzy Aggregation Operators and Their Applications to Multiattribute Group Decision-Making

2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Lei Xu ◽  
Yi Liu ◽  
Haobin Liu

As a generalization of intuitionistic fuzzy set (IFS) and Pythagorean fuzzy set (PFS), q-rung orthopair fuzzy set (q-ROFS) is a new concept in describing complex fuzzy uncertainty information. The present work focuses on the multiattribute group decision-making (MAGDM) approach under the q-rung orthopair fuzzy information. To begin with, some drawbacks of the existing MAGDM methods based on aggregation operators (AOs) are firstly analyzed. In addition, some improved operational laws put forward to overcome the drawbacks along with some properties of the operational law are proved. Thirdly, we put forward the improved q-rung orthopair fuzzy-weighted averaging (q-IROFWA) aggregation operator and improved q-rung orthopair fuzzy-weighted power averaging (q-IROFWPA) aggregation operator and present some of their properties. Then, based on the q-IROFWA operator and q-IROFWPA operator, we proposed a new method to deal with MAGDM problems under the fuzzy environment. Finally, some numerical examples are provided to illustrate the feasibility and validity of the proposed method.

2018 ◽  
Vol 14 (03) ◽  
pp. 343-361 ◽  
Author(s):  
K. Rahman ◽  
A. Ali ◽  
S. Abdullah ◽  
F. Amin

Interval-valued Pythagorean fuzzy set is one of the successful extensions of the interval-valued intuitionistic fuzzy set for handling the uncertainties in the data. Under this environment, in this paper, we introduce the notion of induced interval-valued Pythagorean fuzzy Einstein ordered weighted averaging (I-IVPFEOWA) aggregation operator. Some of its desirable properties namely, idempotency, boundedness, commutatively, monotonicity have also been proved. The main advantage of using the proposed operator is that this operator gives a more complete view of the problem to the decision-makers. The method proposed in this paper provides more general, more accurate and precise results as compared to the existing methods. Therefore this method play a vital role in real world problems. Finally, we apply the proposed operator to deal with multi-attribute group decision- making problems under interval-valued Pythagorean fuzzy information. The approach has been illustrated with a numerical example from the field of the decision-making problems to show the validity, practicality and effectiveness of the new approach.


2018 ◽  
Vol 29 (1) ◽  
pp. 736-752 ◽  
Author(s):  
Khaista Rahman ◽  
Saleem Abdullah ◽  
Asad Ali ◽  
Fazli Amin

Abstract Pythagorean fuzzy set is one of the successful extensions of the intuitionistic fuzzy set for handling uncertainties in information. Under this environment, in this paper, we introduce the notion of Pythagorean fuzzy Einstein hybrid averaging (PFEHA) aggregation operator along with some of its properties, namely idempotency, boundedness, and monotonicity. PFEHA aggregation operator is the generalization of Pythagorean fuzzy Einstein weighted averaging aggregation operator and Pythagorean fuzzy Einstein ordered weighted averaging aggregation operator. The operator proposed in this paper provides more accurate and precise results as compared to the existing operators. Therefore, this method plays a vital role in real-world problems. Finally, we applied the proposed operator and method to multiple-attribute group decision making.


2014 ◽  
Vol 20 (4) ◽  
pp. 648-672 ◽  
Author(s):  
Wei Zhou ◽  
Jian Min He

An important research topic related to the theory and application of the interval-valued intuitionistic fuzzy weighted aggregation operators is how to determine their associated weights. In this paper, we propose a precise weight-determined (PWD) method of the monotonicity and scale-invariance, just based on the new score and accuracy functions of interval-valued intuitionistic fuzzy number (IIFN). Since the monotonicity and scale-invariance, the PWD method may be a precise and objective approach to calculate the weights of IIFN and interval-valued intuitionistic fuzzy aggregation operator, and a more suitable approach to distinguish different decision makers (DMs) and experts in group decision making. Based on the PWD method, we develop two new interval-valued intuitionistic fuzzy aggregation operators, i.e. interval-valued intuitionistic fuzzy ordered precise weighted averaging (IIFOPWA) operator and interval-valued intuitionistic fuzzy ordered precise weighted geometric (IIFOPWG) operator, and study their desirable properties in detail. Finally, we provide an illustrative example.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Runtong Zhang ◽  
Jun Wang ◽  
Xiaomin Zhu ◽  
Meimei Xia ◽  
Ming Yu

The Pythagorean fuzzy set as an extension of the intuitionistic fuzzy set characterized by membership and nonmembership degrees has been introduced recently. Accordingly, the square sum of the membership and nonmembership degrees is a maximum of one. The Pythagorean fuzzy set has been previously applied to multiattribute group decision-making. This study develops a few aggregation operators for fusing the Pythagorean fuzzy information, and a novel approach to decision-making is introduced based on the proposed operators. First, we extend the generalized Bonferroni mean to the Pythagorean fuzzy environment and introduce the generalized Pythagorean fuzzy Bonferroni mean and the generalized Pythagorean fuzzy Bonferroni geometric mean. Second, a new generalization of the Bonferroni mean, namely, the dual generalized Bonferroni mean, is proposed by considering the shortcomings of the generalized Bonferroni mean. Furthermore, we investigate the dual generalized Bonferroni mean in the Pythagorean fuzzy sets and introduce the dual generalized Pythagorean fuzzy Bonferroni mean and dual generalized Pythagorean fuzzy Bonferroni geometric mean. Third, a novel approach to multiattribute group decision-making based on proposed operators is proposed. Lastly, a numerical instance is provided to illustrate the validity of the new approach.


2021 ◽  
Author(s):  
Rajkumar Verma ◽  
Niti Mittal

Abstract The linguistic Pythagorean fuzzy set (LPFS) is a prominent tool for comprehensively representing qualitative information data. Aggregation operators (AOs) play an essential role in multiple attribute group decision-making (MAGDM) problems. In the present manuscript, we define four new operational laws for linguistic Pythagorean fuzzy numbers (LPFNs) based on Archimedean t-norm and t-conorm. Paper also uses the linguistic scale function (LSF) in order to accommodate different semantic situations during the operational process. Next, we introduce some new generalized arithmetic AOs, including the generalized Archimedean linguistic Pythagorean fuzzy weighted averaging (GALPFWA) operator, the generalized Archimedean linguistic Pythagorean fuzzy ordered weighted averaging (GALPFOWA) operator, the generalized Archimedean linguistic Pythagorean fuzzy hybrid averaging (GALPFHA) operator along with their desirable properties. The developed AOs include several existing linguistic Pythagorean fuzzy aggregation operators as their particular and limiting cases. Finally, using the proposed AOs, a new approach for solving the MAGDM problem is given and illustrated with a real-life numerical example to demonstrate its flexibility and effectiveness.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 413 ◽  
Author(s):  
Huanhuan Jin ◽  
Shahzaib Ashraf ◽  
Saleem Abdullah ◽  
Muhammad Qiyas ◽  
Mahwish Bano ◽  
...  

The key objective of the proposed work in this paper is to introduce a generalized form of linguistic picture fuzzy set, so-called linguistic spherical fuzzy set (LSFS), combining the notion of linguistic fuzzy set and spherical fuzzy set. In LSFS we deal with the vague and defective information in decision making. LSFS is characterized by linguistic positive, linguistic neutral and linguistic negative membership degree which satisfies the conditions that the square sum of its linguistic membership degrees is less than or equal to 1. In this paper, we investigate the basic operations of linguistic spherical fuzzy sets and discuss some related results. We extend operational laws of aggregation operators and propose linguistic spherical fuzzy weighted averaging and geometric operators based on spherical fuzzy numbers. Further, the proposed aggregation operators of linguistic spherical fuzzy number are applied to multi-attribute group decision-making problems. To implement the proposed models, we provide some numerical applications of group decision-making problems. In addition, compared with the previous model, we conclude that the proposed technique is more effective and reliable.


2018 ◽  
Vol 29 (1) ◽  
pp. 393-408 ◽  
Author(s):  
Khaista Rahman ◽  
Saleem Abdullah ◽  
Muhammad Sajjad Ali Khan

Abstract In this paper, we introduce the notion of Einstein aggregation operators, such as the interval-valued Pythagorean fuzzy Einstein weighted averaging aggregation operator and the interval-valued Pythagorean fuzzy Einstein ordered weighted averaging aggregation operator. We also discuss some desirable properties, such as idempotency, boundedness, commutativity, and monotonicity. The main advantage of using the proposed operators is that these operators give a more complete view of the problem to the decision makers. These operators provide more accurate and precise results as compared the existing method. Finally, we apply these operators to deal with multiple-attribute group decision making under interval-valued Pythagorean fuzzy information. For this, we construct an algorithm for multiple-attribute group decision making. Lastly, we also construct a numerical example for multiple-attribute group decision making.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1236
Author(s):  
Muhammad Riaz ◽  
Ayesha Razzaq ◽  
Humaira Kalsoom ◽  
Dragan Pamučar ◽  
Hafiz Muhammad Athar Farid ◽  
...  

The notions of fuzzy set (FS) and intuitionistic fuzzy set (IFS) make a major contribution to dealing with practical situations in an indeterminate and imprecise framework, but there are some limitations. Pythagorean fuzzy set (PFS) is an extended form of the IFS, in which degree of truthness and degree of falsity meet the condition 0≤Θ˘2(x)+K2(x)≤1. Another extension of PFS is a q´-rung orthopair fuzzy set (q´-ROFS), in which truthness degree and falsity degree meet the condition 0≤Θ˘q´(x)+Kq´(x)≤1,(q´≥1), so they can characterize the scope of imprecise information in more comprehensive way. q´-ROFS theory is superior to FS, IFS, and PFS theory with distinguished characteristics. This study develops a few aggregation operators (AOs) for the fusion of q´-ROF information and introduces a new approach to decision-making based on the proposed operators. In the framework of this investigation, the idea of a generalized parameter is integrated into the q´-ROFS theory and different generalized q´-ROF geometric aggregation operators are presented. Subsequently, the AOs are extended to a “group-based generalized parameter”, with the perception of different specialists/decision makers. We developed q´-ROF geometric aggregation operator under generalized parameter and q´-ROF geometric aggregation operator under group-based generalized parameter. Increased water requirements, in parallel with water scarcity, force water utilities in developing countries to follow complex operating techniques for the distribution of the available amounts of water. Reducing water losses from water supply systems can help to bridge the gap between supply and demand. Finally, a decision-making approach based on the proposed operator is being built to solve the problems under the q´-ROF environment. An illustrative example related to water loss management has been given to show the validity of the developed method. Comparison analysis between the proposed and the existing operators have been performed in term of counter-intuitive cases for showing the liability and dominance of proposed techniques to the existing one is also considered.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Wei Liang ◽  
Xiaolu Zhang ◽  
Manfeng Liu

As a new extension of Pythagorean fuzzy set (also called Atanassov’s intuitionistic fuzzy set of second type), interval-valued Pythagorean fuzzy set which is parallel to Atanassov’s interval-valued intuitionistic fuzzy set has recently been developed to model imprecise and ambiguous information in practical group decision making problems. The aim of this paper is to put forward a novel decision making method for handling multiple criteria group decision making problems within interval-valued Pythagorean fuzzy environment based on interval-valued Pythagorean fuzzy numbers (IVPFNs). There are three key issues being addressed in this approach. The first is to introduce an interval-valued Pythagorean fuzzy weighted arithmetic averaging (IVPF-WAA) operator to aggregate the decision data in order to get the overall preference values of alternatives. Some desirable properties of the IVPF-WAA operator are also investigated. Based on the idea of the maximizing deviation method, the second is to establish an optimization model for determining the weights of criteria for each expert. The third is to construct a minimizing consistency optimal model to derive the weights of criteria for the group. Finally, an illustrating example is given to verify the proposed approach.


2020 ◽  
pp. 1-20
Author(s):  
Muhammad Akram ◽  
Gulfam Shahzadi ◽  
Sundas Shahzadi

An q-rung orthopair fuzzy set is a generalized structure that covers the modern extensions of fuzzy set, including intuitionistic fuzzy set and Pythagorean fuzzy set, with an adjustable parameter q that makes it flexible and adaptable to describe the inexact information in decision making. The condition of q-rung orthopair fuzzy set, i.e., sum of q th power of membership degree and nonmembership degree is bounded by one, makes it highly competent and adequate to get over the limitations of existing models. The basic purpose of this study is to establish some aggregation operators under the q-rung orthopair fuzzy environment with Einstein norm operations. Motivated by innovative features of Einstein operators and dominant behavior of q-rung orthopair fuzzy set, some new aggregation operators, namely, q-rung orthopair fuzzy Einstein weighted averaging, q-rung orthopair fuzzy Einstein ordered weighted averaging, generalized q-rung orthopair fuzzy Einstein weighted averaging and generalized q-rung orthopair fuzzy Einstein ordered weighted averaging operators are defined. Furthermore, some properties related to proposed operators are presented. Moreover, multi-attribute decision making problems related to career selection, agriculture land selection and residential place selection are presented under these operators to show the capability and proficiency of this new idea. The comparison analysis with existing theories shows the superiorities of proposed model.


Sign in / Sign up

Export Citation Format

Share Document