scholarly journals Imaging of Mouse Brain Fixated in Ethanol in Micro-CT

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Jana Mrzílková ◽  
Matěj Patzelt ◽  
Pasquale Gallina ◽  
Zdeněk Wurst ◽  
Martin Šeremeta ◽  
...  

Micro-CT imaging is a well-established morphological method for the visualization of animal models. We used ethanol fixation of the mouse brains to perform high-resolution micro-CT scans showing in great details brain grey and white matters. It was possible to identify more than 50 neuroanatomical structures on the 5 selected coronal sections. Among white matter structures, we identified fornix, medial lemniscus, crossed tectospinal pathway, mammillothalamic tract, and the sensory root of the trigeminal ganglion. Among grey matter structures, we identified basal nuclei, habenular complex, thalamic nuclei, amygdala, subparts of hippocampal formation, superior colliculi, Edinger–Westphal nucleus, and others. We suggest that micro-CT of the mouse brain could be used for neurohistological lesions evaluation as an alternative to classical neurohistology because it does not destroy brain tissue.

2017 ◽  
Vol 1 ◽  
pp. 239821281772344 ◽  
Author(s):  
Emma J. Bubb ◽  
Lisa Kinnavane ◽  
John P. Aggleton

This review brings together current knowledge from tract tracing studies to update and reconsider those limbic connections initially highlighted by Papez for their presumed role in emotion. These connections link hippocampal and parahippocampal regions with the mammillary bodies, the anterior thalamic nuclei, and the cingulate gyrus, all structures now strongly implicated in memory functions. An additional goal of this review is to describe the routes taken by the various connections within this network. The original descriptions of these limbic connections saw their interconnecting pathways forming a serial circuit that began and finished in the hippocampal formation. It is now clear that with the exception of the mammillary bodies, these various sites are multiply interconnected with each other, including many reciprocal connections. In addition, these same connections are topographically organised, creating further subsystems. This complex pattern of connectivity helps explain the difficulty of interpreting the functional outcome of damage to any individual site within the network. For these same reasons, Papez’s initial concept of a loop beginning and ending in the hippocampal formation needs to be seen as a much more complex system of hippocampal–diencephalic–cingulate connections. The functions of these multiple interactions might be better viewed as principally providing efferent information from the posterior medial temporal lobe. Both a subcortical diencephalic route (via the fornix) and a cortical cingulate route (via retrosplenial cortex) can be distinguished. These routes provide indirect pathways for hippocampal interactions with prefrontal cortex, with the preponderance of both sets of connections arising from the more posterior hippocampal regions. These multi-stage connections complement the direct hippocampal projections to prefrontal cortex, which principally arise from the anterior hippocampus, thereby creating longitudinal functional differences along the anterior–posterior plane of the hippocampus.


Hippocampus ◽  
2015 ◽  
Vol 25 (9) ◽  
pp. 977-992 ◽  
Author(s):  
Christopher M. Dillingham ◽  
Jonathan T. Erichsen ◽  
Shane M. O'Mara ◽  
John P. Aggleton ◽  
Seralynne D. Vann

2008 ◽  
Vol 193 (3) ◽  
pp. 216-221 ◽  
Author(s):  
Samuel R. Chamberlain ◽  
Lara A. Menzies ◽  
Naomi A. Fineberg ◽  
Natalia del Campo ◽  
John Suckling ◽  
...  

BackgroundTrichotillomania (repetitive hair-pulling) is an Axis I psychiatric disorder whose neurobiological basis is incompletely understood. Whole-brain trichotillomania neuroimaging studies are lacking.AimsTo investigate grey and white matter abnormalities over the whole brain in patients with trichotillomania.MethodEighteen patients with DSM–IV trichotillomania and 19 healthy controls undertook structural magnetic resonance imaging after providing written informed consent. Differences in grey and white matter were investigated using computational morphometry.ResultsPatients with trichotillomania showed increased grey matter densities in the left striatum, left amygdalo-hippocampal formation, and multiple (including cingulate, supplementary motor, and frontal) cortical regions bilaterally.ConclusionsTrichotillomania was associated with structural grey matter changes in neural circuitry implicated in habit learning, cognition and affect regulation. These findings inform animal models of the disorder and highlight key regions of interest for future translational research.


2016 ◽  
Vol 43 (6Part12) ◽  
pp. 3459-3459
Author(s):  
C Tipton ◽  
M Lamba ◽  
Z Qi ◽  
K LaSance ◽  
C Tipton

2017 ◽  
Vol 41 (S1) ◽  
pp. S104-S105
Author(s):  
P. Di Carlo ◽  
G. Pergola ◽  
M. Cariello ◽  
A. Bonvino ◽  
M. Mancini ◽  
...  

IntroductionSchizotypy refers to a set of temporally stable traits that are observed in the general population and that resemble, in attenuated form, the symptoms of schizophrenia. In a previous work, we identified volumetric patterns in thalamic subregions which were associated with disease status, and trained a random forests classifier, accounting for such thalamic volumetric patterns, that discriminated healthy controls (HC) from patients with schizophrenia (SCZ) (81% accuracy) [1].Objectivesi) to assess performance of random forests classifier developed by Pergola and coworkers [1], in an independent sample of healthy subjects; ii) to test whether false positives (FP), i.e. HC classified as SCZ based on such classifier would be associated with greater schizotypy compared with true negatives (TN), i.e. HC classified as such.MethodsA total of 167 HC participated in the MRI study and filled the Schizotypal Personality Questionnaire (SPQ). We pre-processed MRI data with SPM8 and DARTEL. Then, we used thalamic grey matter volumes (GMV) as features in the random forests prediction of disease status at the single subject level. Finally, we tested SPQ scores differences between FP and TN with Mann-Whitney test.ResultsThe classification accuracy was 71%. FP had greater SPQ scores compared to TN (P = 0.007).ConclusionsClassification accuracy of our classifier in an independent sample suggests that thalamic GMV patterns are reproducible markers of disease status. Furthermore, the present results also suggest that variability of thalamic GMV patterns in HC may have relevance for subclinical phenotypes related to schizophrenia spectrum.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2019 ◽  
Author(s):  
Giovanne B. Diniz ◽  
Daniella S. Battagello ◽  
Bianca S. M. Bono ◽  
Jozélia G. P. Ferreira ◽  
Marianne O. Klein ◽  
...  

AbstractMelanin-concentrating hormone (MCH) is a ubiquitous vertebrate neuropeptide predominantly synthesized by neurons of the diencephalon that can act through two G protein-coupled receptors, called MCHR1 and MCHR2. The expression of Mchr1 has been investigated in both rats and mice, but its synthesis remains poorly described. After identifying an antibody that detects MCHR1 with high specificity, we employed immunohistochemistry to map the distribution of MCHR1 in the CNS of rats and mice. Multiple neurochemical markers were also employed to characterize some of the neuronal populations that synthesize MCHR1. Our results show that MCHR1 is abundantly found in a sensory subcellular structure called the neuronal primary cilium, which has been associated with the detection of free neurochemical agents released to act through volume transmission. Ciliary MCHR1 was found in a wide range of areas, including the olfactory bulb, cortical mantle, striatum, hippocampal formation, amygdala, midline thalamic nuclei, periventricular hypothalamic nuclei, and midbrain areas. No differences were observed between male and female mice, and rats and mice diverged in two key areas: the caudate-putamen nucleus and the subgranular zone of the dentate gyrus. Ciliary MCHR1 was found in close association to several neurochemical markers, including tyrosine hydroxylase, calretinin, kisspeptin, estrogen receptor, oxytocin, vasopressin, and corticotropin-releasing factor. Given the role of neuronal primary cilia in sensing free neurochemical messengers in the extracellular fluid, the widespread distribution of ciliary MCHR1, and the diverse neurochemical populations who synthesize MCHR1, our data indicates that volume transmission may play a prominent role in the normal function of the MCH system.


2021 ◽  
Author(s):  
S. C. Barnett ◽  
L.C. Parr-Brownlie ◽  
B. A. L. Perry ◽  
C. K. Young ◽  
H. E. Wicky ◽  
...  

AbstractA hippocampal-diencephalic-cortical network supports memory function. The anterior thalamic nuclei (ATN) form a key anatomical hub within this system. Consistent with this, injury to the mammillary body-ATN axis is associated with examples of clinical amnesia. However, there is only limited and indirect support that the output of ATN neurons actively enhances memory. Here, in rats, we first showed that mammillothalamic tract (MTT) lesions caused a persistent impairment in spatial working memory. MTT lesions also reduced rhythmic electrical activity across the memory system. Next, we introduced 8.5 Hz optogenetic theta-burst stimulation of the ATN glutamatergic neurons. The exogenously-triggered, regular pattern of stimulation produced an acute and substantial improvement of spatial working memory in rats with MTT lesions and enhanced rhythmic electrical activity. Neither behaviour nor rhythmic activity was affected by endogenous stimulation derived from the dorsal hippocampus. Analysis of immediate early gene activity, after the rats foraged for food in an open field, showed that exogenously-triggered ATN stimulation also increased Zif268 expression across memory-related structures. These findings provide clear evidence that increased ATN neuronal activity supports memory. They suggest that ATN-focused gene therapy may be feasible to counter clinical amnesia associated with dysfunction in the mammillary body-ATN axis.HighlightsThe mammillothalamic tract (MTT) supports neural activity in an extended memory system.Optogenetic activation of neurons in the anterior thalamus acutely improves memory after MTT lesions.Rescued memory associates with system-wide neuronal activation and enhanced EEG.Anterior thalamus actively sustains memory and is a feasible therapeutic target.Abstract FigureOptostimulation of anterior thalamus restores memory function after MTT lesionsCreated with BioRender.com


Sign in / Sign up

Export Citation Format

Share Document