Background: Grey matter atrophy occurs as a function of ageing and is accelerated in dementia. Previous research suggests physical activity attenuates grey matter loss; however, there appears to be individual variability in this effect. Understanding factors that can affect the relationship between physical activity and brain volume may enable prediction of individual response, and aid in identifying those that gain the greatest neural benefits from physical activity. The current study examined the relationship between objectively-measured physical activity and brain volume; and whether this relationship is moderated by age, sex, or a priori candidate genetic factors.
Methods: Data from 10,083 men and women (50 years and over) of the UK Biobank were used to examine: 1) the relationship between objectively-measured physical activity and brain volume; and 2) whether the relationship between objectively-measured physical activity and brain volume is moderated by age, sex, brain-derived neurotrophic factor (BDNF) Val66Met, or apolipoprotein (APOE) e4 allele carriage. All participants underwent a magnetic resonance imaging scan to quantify grey matter volumes, physical activity monitoring via accelerometry, and genotyping.
Results: Physical activity was associated with total grey matter volume (B = 0.14, p = 0.001, q = 0.005) and right hippocampal volume (B = 1.45, p = 0.008, q = 0.016). The physical activity*sex interaction predicted cortical grey matter (B = 0.22, p = 0.003, q = 0.004), total grey matter (B = 0.30, p < 0.001, q = 0.001), and right hippocampal volume (B = 3.60, p = 0.001, q = 0.002). Post-hoc analyses revealed males received benefit from higher physical activity levels, in terms of greater cortical grey matter volume (B = 0.13, p = 0.01), total grey matter volume (B=0.23, p < 0.001), and right hippocampal volume (B = 3.05, p = 0.008). No moderating effects of age, APOE e4 allele carriage, or BDNF Val66Met genotype were observed.
Discussion: Our results indicate that in males, but not females, an association exists between objectively-measured physical activity and grey matter volume. Future research should evaluate longitudinal brain volumetrics to better understand the nature of sex-effects on the relationship between physical activity and brain volume.