scholarly journals An Energy and SLA-Aware Resource Management Strategy in Cloud Data Centers

2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Chi Zhang ◽  
Yuxin Wang ◽  
Yuanchen Lv ◽  
Hao Wu ◽  
He Guo

Reducing energy consumption of data centers is an important way for cloud providers to improve their investment yield, but they must also ensure that the services delivered meet the various requirements of consumers. In this paper, we propose a resource management strategy to reduce both energy consumption and Service Level Agreement (SLA) violations in cloud data centers. It contains three improved methods for subproblems in dynamic virtual machine (VM) consolidation. For making hosts detection more effective and improving the VM selection results, first, the overloaded hosts detecting method sets a dynamic independent saturation threshold for each host, respectively, which takes the CPU utilization trend into consideration; second, the underutilized hosts detecting method uses multiple factors besides CPU utilization and the Naive Bayesian classifier to calculate the combined weights of hosts in prioritization step; and third, the VM selection method considers both current CPU usage and future growth space of CPU demand of VMs. To evaluate the performance of the proposed strategy, it is simulated in CloudSim and compared with five existing energy–saving strategies using real-world workload traces. The experimental results show that our strategy outperforms others with minimum energy consumption and SLA violation.

2014 ◽  
Vol 40 (5) ◽  
pp. 1621-1633 ◽  
Author(s):  
Yongqiang Gao ◽  
Haibing Guan ◽  
Zhengwei Qi ◽  
Tao Song ◽  
Fei Huan ◽  
...  

2018 ◽  
Vol 7 (2.8) ◽  
pp. 550 ◽  
Author(s):  
G Anusha ◽  
P Supraja

Cloud computing is a growing technology now-a-days, which provides various resources to perform complex tasks. These complex tasks can be performed with the help of datacenters. Data centers helps the incoming tasks by providing various resources like CPU, storage, network, bandwidth and memory, which has resulted in the increase of the total number of datacenters in the world. These data centers consume large volume of energy for performing the operations and which leads to high operation costs. Resources are the key cause for the power consumption in data centers along with the air and cooling systems. Energy consumption in data centers is comparative to the resource usage. Excessive amount of energy consumption by datacenters falls out in large power bills. There is a necessity to increase the energy efficiency of such data centers. We have proposed an Energy aware dynamic virtual machine consolidation (EADVMC) model which focuses on pm selection, vm selection, vm placement phases, which results in the reduced energy consumption and the Quality of service (QoS) to a considerable level.


2020 ◽  
Vol 113 ◽  
pp. 329-342
Author(s):  
Bin Liang ◽  
Xiaoshe Dong ◽  
Yufei Wang ◽  
Xingjun Zhang

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xialin Liu ◽  
Junsheng Wu ◽  
Gang Sha ◽  
Shuqin Liu

Cloud data centers consume huge amount of electrical energy bringing about in high operating costs and carbon dioxide emissions. Virtual machine (VM) consolidation utilizes live migration of virtual machines (VMs) to transfer a VM among physical servers in order to improve the utilization of resources and energy efficiency in cloud data centers. Most of the current VM consolidation approaches tend to aggressive-migrate for some types of applications such as large capacity application such as speech recognition, image processing, and decision support systems. These approaches generate a high migration thrashing because VMs are consolidated to servers according to VM’s instant resource usage without considering their overall and long-term utilization. The proposed approach, dynamic consolidation with minimization of migration thrashing (DCMMT) which prioritizes VM with high capacity, significantly reduces migration thrashing and the number of migrations to ensure service-level agreement (SLA) since it keeps VMs likely to suffer from migration thrashing in the same physical servers instead of migrating. We have performed experiments using real workload traces compared to existing aggressive-migration-based solutions; through simulations, we show that our approach improves migration thrashing metric by about 28%, number of migrations metric by about 21%, and SLAV metric by about 19%.


Sign in / Sign up

Export Citation Format

Share Document