scholarly journals Short-Term Traffic Flow Prediction of Expressway: A Hybrid Method Based on Singular Spectrum Analysis Decomposition

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chunyan Shuai ◽  
Zhengyang Pan ◽  
Lun Gao ◽  
HongWu Zuo

Real-time expressway traffic flow prediction is always an important research field of intelligent transportation, which is conducive to inducing and managing traffic flow in case of congestion. According to the characteristics of the traffic flow, this paper proposes a hybrid model, SSA-LSTM-SVR, to improve forecasting accuracy of the short-term traffic flow. Singular Spectrum Analysis (SSA) decomposes the traffic flow into one principle component and three random components, and then in terms of different characteristics of these components, Long Short-Term Memory (LSTM) and Support Vector Regression (SVR) are applied to make prediction of different components, respectively. By fusing respective forecast results, SSA-LSTM-SVR obtains the final short-term predictive value. Experiments on the traffic flows of Guizhou expressway in January 2016 show that the proposed SSA-LSTM-SVR model has lower predictive errors and a higher accuracy and fitting goodness than other baselines. This illustrates that a hybrid model for traffic flow prediction based on components decomposition is more effective than a single model, since it can capture the main regularity and random variations of traffic flow.

2021 ◽  
Vol 9 (11) ◽  
pp. 1231
Author(s):  
Dangli Wang ◽  
Yangran Meng ◽  
Shuzhe Chen ◽  
Cheng Xie ◽  
Zhao Liu

Accurate vessel traffic flow prediction is significant for maritime traffic guidance and control. According to the characteristics of vessel traffic flow data, a new hybrid model, named DWT–Prophet, is proposed based on the discrete wavelet decomposition and Prophet framework for the prediction of vessel traffic flow. First, vessel traffic flow was decomposed into a low-frequency component and several high-frequency components by wavelet decomposition. Second, Prophet was trained to predict the components, respectively. Finally, the prediction results of the components were reconstructed to complete the prediction. The experimental results demonstrate that the hybrid DWT–Prophet outperformed the single Prophet, long short-term memory, random forest, and support vector regression (SVR). Moreover, the practicability of the new forecasting method was improved effectively.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2946 ◽  
Author(s):  
Wangyang Wei ◽  
Honghai Wu ◽  
Huadong Ma

Smart cities can effectively improve the quality of urban life. Intelligent Transportation System (ITS) is an important part of smart cities. The accurate and real-time prediction of traffic flow plays an important role in ITSs. To improve the prediction accuracy, we propose a novel traffic flow prediction method, called AutoEncoder Long Short-Term Memory (AE-LSTM) prediction method. In our method, the AutoEncoder is used to obtain the internal relationship of traffic flow by extracting the characteristics of upstream and downstream traffic flow data. Moreover, the Long Short-Term Memory (LSTM) network utilizes the acquired characteristic data and the historical data to predict complex linear traffic flow data. The experimental results show that the AE-LSTM method had higher prediction accuracy. Specifically, the Mean Relative Error (MRE) of the AE-LSTM was reduced by 0.01 compared with the previous prediction methods. In addition, AE-LSTM method also had good stability. For different stations and different dates, the prediction error and fluctuation of the AE-LSTM method was small. Furthermore, the average MRE of AE-LSTM prediction results was 0.06 for six different days.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xianglong Luo ◽  
Danyang Li ◽  
Yu Yang ◽  
Shengrui Zhang

The traffic flow prediction is becoming increasingly crucial in Intelligent Transportation Systems. Accurate prediction result is the precondition of traffic guidance, management, and control. To improve the prediction accuracy, a spatiotemporal traffic flow prediction method is proposed combined with k-nearest neighbor (KNN) and long short-term memory network (LSTM), which is called KNN-LSTM model in this paper. KNN is used to select mostly related neighboring stations with the test station and capture spatial features of traffic flow. LSTM is utilized to mine temporal variability of traffic flow, and a two-layer LSTM network is applied to predict traffic flow respectively in selected stations. The final prediction results are obtained by result-level fusion with rank-exponent weighting method. The prediction performance is evaluated with real-time traffic flow data provided by the Transportation Research Data Lab (TDRL) at the University of Minnesota Duluth (UMD) Data Center. Experimental results indicate that the proposed model can achieve a better performance compared with well-known prediction models including autoregressive integrated moving average (ARIMA), support vector regression (SVR), wavelet neural network (WNN), deep belief networks combined with support vector regression (DBN-SVR), and LSTM models, and the proposed model can achieve on average 12.59% accuracy improvement.


Sign in / Sign up

Export Citation Format

Share Document