scholarly journals Digital Image Correlation Analysis of Displacement Based on Corrected Three Surface Fitting Algorithm

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Tong-bin Zhao ◽  
Wei Zhang ◽  
Wei-yao Guo

SFA (Surface Fitting Algorithm) for continuous displacement is an important method for digital image correlation with antinoise ability and computational efficiency advantages in practical applications. In order to improve the algorithm accuracy and expand its application range, this paper tries to improve the SFA and studies the modified cubic surface fitting algorithm CTSFA (Corrected Three Surface Fitting Algorithm), which is suitable for solving the initial value of continuous displacement. Bilinear interpolation and adjacent interpolation are used to analyze the gray level at any integer-pixel position in the displacement matrix and the weight coefficient is given. The distance-weighted method is used to approximate the true initial displacement value of the continuum, and the algorithm suitable for digital image processing is extended to the continuum displacement solution. The cubic surface expression of the CTSFA programmatic application is solved by the least squares method, and the correlation coefficient of the power basis function is calculated. In the computer simulation of speckle test, the comparison between CTSFA and SFA on the calculation results of linear and nonlinear displacement fields shows that the calculated amount of CTSFA is basically the same as that of SFA, but the calculation accuracy is doubled. The study of analysing the Brazilian splitting test using CTSFA and SFA reveals that CTSFA is better than SFA in observing the development of cracks.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Daguo Quan ◽  
Shuailong Lian ◽  
Jing Bi ◽  
Chaolin Wang

This paper studies the change of physical and mechanical properties of sandstone after freeze-thaw (F-T) cycle treatment. Firstly, the effects of the freeze-thaw treatment on the P-wave velocity of sandstone specimens are analyzed. It is found that the P-wave velocity decreases with the increase of the number of freeze-thaw cycles. Secondly, the effect of freeze-thaw treatment on the mechanical properties of sandstone is analyzed. The results show that the tensile strength and compressive strength of sandstone samples decrease with the increase of the number of freeze-thaw cycles. Finally, the digital image correlation (DIC) technique was used to collect the full-field deformation data of the samples, and the influence of freeze-thaw cycles on the deformation characteristics and fracture process of sandstone was analyzed. Based on the standard deviation of the principal strain in the field deformation data, the damage variables were proposed to characterize the damage process of sandstone samples in the Brazilian splitting test and the uniaxial compression test. The results show that the proposed damage variables can reflect the damage evolution process of the sample effectively. According to the variation of damage variables, the damage evolution process of sandstone specimens during the Brazilian splitting test and the uniaxial compression test can be divided into three stages: slow or negative growth stage, stable growth stage, and rapid growth stage. The research results are of great significance for predicting the failure mode and damage evolution of rock mass engineering by using digital image correlation technology.


Sign in / Sign up

Export Citation Format

Share Document