scholarly journals Analysis of Mechanical Properties of Sandstone under Freeze-Thaw Cycles Based on Digital Image Correlation (DIC)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Daguo Quan ◽  
Shuailong Lian ◽  
Jing Bi ◽  
Chaolin Wang

This paper studies the change of physical and mechanical properties of sandstone after freeze-thaw (F-T) cycle treatment. Firstly, the effects of the freeze-thaw treatment on the P-wave velocity of sandstone specimens are analyzed. It is found that the P-wave velocity decreases with the increase of the number of freeze-thaw cycles. Secondly, the effect of freeze-thaw treatment on the mechanical properties of sandstone is analyzed. The results show that the tensile strength and compressive strength of sandstone samples decrease with the increase of the number of freeze-thaw cycles. Finally, the digital image correlation (DIC) technique was used to collect the full-field deformation data of the samples, and the influence of freeze-thaw cycles on the deformation characteristics and fracture process of sandstone was analyzed. Based on the standard deviation of the principal strain in the field deformation data, the damage variables were proposed to characterize the damage process of sandstone samples in the Brazilian splitting test and the uniaxial compression test. The results show that the proposed damage variables can reflect the damage evolution process of the sample effectively. According to the variation of damage variables, the damage evolution process of sandstone specimens during the Brazilian splitting test and the uniaxial compression test can be divided into three stages: slow or negative growth stage, stable growth stage, and rapid growth stage. The research results are of great significance for predicting the failure mode and damage evolution of rock mass engineering by using digital image correlation technology.

2011 ◽  
Vol 70 ◽  
pp. 135-140 ◽  
Author(s):  
G. Le Louëdec ◽  
M.A. Sutton ◽  
Fabrice Pierron

Welding is one of the most popular joining technologies in industry. Depending on the materials to be joined, the geometry of the parts and the number of parts to be joined, there is a wide variety of methods that can be used. These joining techniques share a common feature: the material in the weld zone experiences different thermo-mechanical history, resulting in significant variations in material microstructure and spatial heterogeneity in mechanical properties. To optimize the joining process, or to refine the design of welded structures, it is necessary to identify the local mechanical properties within the different regions of the weld. The development of full-field kinematic measurements (digital image correlation, speckle interferometry, etc.) helps to shed a new light on this problem. The large amount of experimental information attained with these methods makes it possible to visualize the spatial distribution of strain on the specimen surface. Full-field kinematic measurements provide more information regarding the spatial variations in material behaviour. As a consequence, it is now possible to quantify the spatial variations in mechanical properties within the weld region through a properly constructed inverse analysis procedure. High speed tensile tests have been performed on FSW aluminium welds. The test was performed on an MTS machine at a cross-head speed of up to 76 mm/s. Displacement fields were measured across the specimen by coupling digital image correlation with a high-speed camera (Phantom V7.1) taking 1000 frames per second. Then, through the use of the virtual fields method it is possible to retrieve the mechanical parameters of the different areas of the weld from the strain field and the loading. The elastic parameters (Young’s modulus and Poisson’s ratio) are supposed to be constant through the weld. Their identification was carried out using the virtual fields method in elasticity using the data of the early stage of the experiment. Assuming that the mechanical properties (elastic and plastic) of the weld are constant through the thickness, the plastic parameters were identified on small sections through the specimen, using a simple linear hardening model. This method leads to a discrete identification of the evolution of the mechanical properties through the weld. It allows the understanding of the slight variations of yield stress and hardening due to the complexity of the welding process.


Sign in / Sign up

Export Citation Format

Share Document