scholarly journals The Hybrid Method of VMD-PSR-SVD and Improved Binary PSO-KNN for Fault Diagnosis of Bearing

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Sheng-wei Fei

Fault diagnosis of bearing based on variational mode decomposition (VMD)-phase space reconstruction (PSR)-singular value decomposition (SVD) and improved binary particle swarm optimization (IBPSO)-K-nearest neighbor (KNN) which is abbreviated as VPS-IBPSOKNN is presented in this study, among which VMD-PSR-SVD (VPS) is presented to obtain the features of the bearing vibration signal (BVS), and IBPSO is presented to select the parameter K of KNN. In IBPSO, the calculation of the next position of each particle is improved to fit the evolution of the particles. The traditional KNN with different parameter K and trained by the training samples with the features based on VMD-SVD (VS-KNN) can be used to compare with the proposed VPS-IBPSOKNN method. The experimental result demonstrates that fault diagnosis ability of bearing of VPS-IBPSOKNN is better than that of VS-KNN, and it can be concluded that fault diagnosis of bearing based on VPS-IBPSOKNN is effective.

Author(s):  
Hanfei Zhang ◽  
Yumei Jian ◽  
Ping Zhou

: A class correlation distance collaborative filtering recommendation algorithm is proposed to solve the problems of category judgment and distance metric in the traditional collaborative filtering recommendation algorithm, which is using the advantage of the distance between the same samples and the class related distance. First, the class correlation distance between the training samples is calculated and stored. Second, the K nearest neighbor samples are selected, the class correlation distance of training samples and the difference ratio between the test samples and training samples are calculated respectively. Finally, according to the difference ratio, we classify the different types of samples. The experimental result shows that the algorithm combined with user rating preference can get lower MAE value, and the recommendation effect is better. With the change of K value, CCDKNN algorithm is obviously better than KNN algorithm and DWKNN algorithm, and the accuracy performance is more stable. The algorithm improves the accuracy of similarity and predictability, which has better performance than the traditional algorithm.


2017 ◽  
Vol 17 (4) ◽  
pp. 936-945 ◽  
Author(s):  
Vanraj ◽  
SS Dhami ◽  
BS Pabla

Intelligent fault diagnosis system based on condition monitoring is expected to assist in the prevention of machine failures and enhance the reliability with lower maintenance cost. Most machine breakdowns related to gears are a result of improper operating conditions and loading, hence leads to failure of the whole mechanism. With advancement in technology, various gear fault diagnosis techniques have been reported which primarily focus on vibration analysis with statistical measures. However, acoustic signals posses a huge potential to monitor the status of the machine but a few studies have been carried out till now. This article describes the implementation of Teager–Kaiser energy operator and empirical mode decomposition methods for fault diagnosis of the gears using acoustic and vibration signals by extracting statistical features. A cross-correlation-based fault index that assists the automatic selection of the sensitive Intrinsic Mode Function (IMF) containing fault information has also been described. The features extracted by all combinations of signal processing techniques are sorted by order of relevance using floating forward selection method. The effectiveness is demonstrated using the results obtained from the experiments. The fault diagnosis is performed with k-nearest neighbor classifier. The results show that the hybrid of empirical mode decomposition–Teager–Kaiser energy operator techniques employs the advantages traits of one or the other technique to generate overall improvement in diagnosing severity of local faults.


2021 ◽  
Vol 11 (3) ◽  
pp. 919
Author(s):  
Jiantao Lu ◽  
Weiwei Qian ◽  
Shunming Li ◽  
Rongqing Cui

Case-based intelligent fault diagnosis methods of rotating machinery can deal with new faults effectively by adding them into the case library. However, case-based methods scarcely refer to automatic feature extraction, and k-nearest neighbor (KNN) commonly required by case-based methods is unable to determine the nearest neighbors for different testing samples adaptively. To solve these problems, a new intelligent fault diagnosis method of rotating machinery is proposed based on enhanced KNN (EKNN), which can take advantage of both parameter-based and case-based methods. First, EKNN is embedded with a dimension-reduction stage, which extracts the discriminative features of samples via sparse filtering (SF). Second, to locate the nearest neighbors for various testing samples adaptively, a case-based reconstruction algorithm is designed to obtain the correlation vectors between training samples and testing samples. Finally, according to the optimized correlation vector of each testing sample, its nearest neighbors can be adaptively selected to obtain its corresponding health condition label. Extensive experiments on vibration signal datasets of bearings are also conducted to verify the effectiveness of the proposed method.


2014 ◽  
Vol 1014 ◽  
pp. 501-504 ◽  
Author(s):  
Shu Guo ◽  
You Cai Xu ◽  
Xin Shi Li ◽  
Ran Tao ◽  
Kun Li ◽  
...  

In order to discover the fault with roller bearing in time, a new fault diagnosis method based on Empirical mode decomposition (EMD) and BP neural network is put forward in the paper. First, we get the fault signal through experiments. Then we use EMD to decompose the vibration signal into a series of single signals. We can extract main fault information from the single signals. The kurtosis coefficient of the single signals forms a feature vector which is used as the input data of the BP neural network. The trained BP neural network can be used for fault identification. Through analyzing, BP neural network can distinguish the fault into normal state, inner race fault, outer race fault. The results show that this method can gain very stable classification performance and good computational efficiency.


2017 ◽  
Vol 9 (1) ◽  
pp. 1-9
Author(s):  
Fandiansyah Fandiansyah ◽  
Jayanti Yusmah Sari ◽  
Ika Putri Ningrum

Face recognition is one of the biometric system that mostly used for individual recognition in the absent machine or access control. This is because the face is the most visible part of human anatomy and serves as the first distinguishing factor of a human being. Feature extraction and classification are the key to face recognition, as they are to any pattern classification task. In this paper, we describe a face recognition method based on Linear Discriminant Analysis (LDA) and k-Nearest Neighbor classifier. LDA used for feature extraction, which directly extracts the proper features from image matrices with the objective of maximizing between-class variations and minimizing within-class variations. The features of a testing image will be compared to the features of database image using K-Nearest Neighbor classifier. The experiments in this paper are performed by using using 66 face images of 22 different people. The experimental result shows that the recognition accuracy is up to 98.33%. Index Terms—face recognition, k nearest neighbor, linear discriminant analysis.


Author(s):  
Hongchuan Cheng ◽  
Yimin Zhang ◽  
Wenjia Lu ◽  
Zhou Yang

To obtain the fault features of the bearing, a method based on variational mode decomposition (VMD), singular value decomposition (SVD) is proposed for fault diagnosis by Gath–Geva (G–G) fuzzy clustering. Firstly, the original signals are decomposed into mode components by VMD accurately and adaptively, and the spatial condition matrix (SCM) can be obtained. The SCM utilized as the reconstruction matrix of SVD can inherit the time delay parameter and embedded dimension automatically, and then the first three singular values from the SCM are used as fault eigenvalues to decrease the feature dimension and improve the computational efficiency. G–G clustering, one of the unsupervised machine learning fuzzy clustering techniques, is employed to obtain the clustering centers and membership matrices under various bearing faults. Finally, Hamming approach degree between the test samples and the known cluster centers is calculated to realize the bearing fault identification. By comparing with EEMD and EMD based on a recursive decomposition algorithm, VMD adopts a novel completely nonrecursive method to avoid mode mixing and end effects. Furthermore, the IMF components calculated from VMD include large amounts of fault information. G–G clustering is not limited by the shapes, sizes and densities in comparison with other clustering methods. VMD and G–G clustering are more suitable for fault diagnosis of the bearing system, and the results of experiment and engineering analysis show that the proposed method can diagnose bearing faults accurately and effectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Longlong Li ◽  
Yahui Cui ◽  
Runlin Chen ◽  
Lingping Chen ◽  
Lihua Wang

The extraction of impulsive signatures from a vibration signal is vital for fault diagnosis of rolling element bearings, which are always whelmed by noise, especially in the early stage of defect development. Aiming at the weak defect diagnosis, kurtosis of Teager energy operator (KTEO) spectrum is employed to indicate the fault information capacity of a spectrum, and considering the accumulative effect of a singular component, accumulative kurtosis of TEO (AKTEO) is firstly proposed to determine the proper signal reconstructed order during vibration signal processing using singular value decomposition (SVD). Then, a vibration processing scheme named SVD-AKTEO is designed where an iteration is employed to reflect an accumulative singular effect by kurtosis of TEO spectrum. Finally, the fault diagnosis results can be extracted from the TEO spectrum output by SVD-AKTEO. Simulation data and real data from a run-to-failure experiment of a rolling bearing are adopted to validate the efficiency, and comparative analysis demonstrates the feasibility to detect the early defect of the rolling bearing.


2020 ◽  
Vol 10 (12) ◽  
pp. 4367
Author(s):  
Réne-Vinicio Sánchez ◽  
Pablo Lucero ◽  
Jean-Carlo Macancela ◽  
Higinio Rubio Alonso ◽  
Mariela Cerrada ◽  
...  

Railway safety is a matter of importance as a single failure can involve risks associated with economic and human losses. The early fault detection in railway axles and other railway parts represents a broad field of research that is currently under study. In the present work, the problem of the early crack detection in railway axles is addressed through condition-based monitoring, with the evaluation of several condition indicators of vibration signals on time and frequency domains. To achieve this goal, we applied two different approaches: in the first approach, we evaluate only the vibrations signals captured by accelerometers placed along the longitudinal direction and, in the second approach, a data fusion technique at the condition indicator level was conducted, evaluating six accelerometers by merging the indicator conditions according to the sensor placement. In both cases, a total of 54 condition indicators per vibration signal was calculated and selecting the best features by applying the Mean Decrease Accuracy method of Random Forest. Finally, we test the best indicators with a K-Nearest Neighbor classifier. For the data collection, a real bogie test bench has been used to simulate crack faults on the railway axles, and vibration signals from both the left and right sides of the axle were measured. The results not only show the performance of condition indicators in different domains, but also show that the fusion of condition indicators works well together to detect a crack fault in railway axles.


Sign in / Sign up

Export Citation Format

Share Document