scholarly journals Vibration Reduction of the Nonlinearly Tufted Carpet Yarn by a Modified Sliding Mode Control Method

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Shuang Huang ◽  
Xin Wu ◽  
Peixing Li

The yarn vibration causes the yarn tension value to fluctuate, causing a change in the amount of yarn feed, thus causing a deviation of the carpet pile height from the predetermined value. To solve this problem, the sliding mode control algorithm is used to design the sliding mode function and the sliding mode control law. And four variables in the yarn vibration system are controlled by the MATLAB software. For solving the chattering problem of the control law, the sliding mode control law is improved. The fuzzy sliding mode control algorithm based on the quasisliding mode is adopted. The results show that the sliding mode control algorithm is effective, but the sliding mode control force needs to be switched at high frequency and there is severe chattering. The fuzzy sliding mode control algorithm based on quasisliding mode is adopted to achieve better control effect with a smaller force. In addition, the control force does not have high-frequency switching, and the change is relatively stable, which reduces the chattering phenomenon of sliding mode control.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wende Zhao ◽  
Decheng Wang ◽  
Zhenzhong Chu ◽  
Mingjun Zhang

This paper investigates the control problem of the buoyancy regulation system for autonomous underwater vehicle (AUV). There are some problems to be considered in the oil-water conversion-based buoyancy regulation system, including the external seawater pressure, the pressure fluctuations, and the slow switching speed of the ball valve. The control accuracy of the buoyancy regulation under the traditional PID controller cannot meet the requirements of the project. In this paper, a fuzzy sliding mode control scheme is developed for the buoyancy regulation system to solve the abovementioned problems. At first, a mathematical model of the buoyancy regulation system is established, and the stability of the system is analyzed. Then, the sliding mode control algorithm is combined with the fuzzy system to improve the control accuracy. Finally, the pool-experiment results on a prototype show that the developed control scheme can meet the requirements of the control accuracy for the buoyancy regulation system.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1658 ◽  
Author(s):  
Zhanmin Zhou ◽  
Bao Zhang ◽  
Dapeng Mao

In this paper, a MIMO (Multi-Input Multi-Output) fuzzy sliding mode control method is proposed for a three-axis inertially stabilized platform. This method is based on the MIMO coupling model of the three-axis inertially stabilized platform in which the dynamic coupling among the three frames, namely the azimuth frame, the pitch frame and the roll frame, is fully considered. Firstly, the dynamic equation of the three-axis inertially stabilized platform is analyzed and its linearized model is obtained. After this, the controller is designed based on the model, during which fuzzy logic is introduced to deal with the frame coupling and the adaptive fuzzy coupling compensation factor is designed to be part of the algorithm. A complete proof of the stability and convergence is also provided in this paper. Finally, the performance of the platform with a MIMO fuzzy sliding mode controller and PI controller is analyzed. The simulation results show that the proposed scheme can guarantee tracking accuracy and effectively suppress the coupling interference between the three frames.


Author(s):  
Qingcong Wu ◽  
Xingsong Wang ◽  
Fengpo Du ◽  
Ruru Xi

The applications of robotics and automation technology to the therapies of neuromuscular and orthopedic impairments have received increasing attention due to their promising prospects. In this paper, we present an actuated upper extremity exoskeleton aimed to facilitate the rehabilitation training of the disable patients. A modified sliding mode control strategy incorporating a proportional-integral-derivative sliding surface and a fuzzy hitting control law is developed to ensure robust and optimal position control performance. Dynamic modeling of the exoskeleton as well as the human arm is presented and then applied to the development of the fuzzy sliding mode control algorithm. A theoretical proof of the stability and convergence of the closed-loop system is presented using the Lyapunov theorem. Three typical real-time position control experiments are conducted with the aim of evaluating the effectiveness of the proposed control scheme. The performances of the fuzzy sliding mode control algorithm are compared to those of conventional proportional-integral-derivative controller and conventional sliding mode control algorithm. The experimental results indicate that the position control with fuzzy sliding mode control algorithm has a bandwidth about 4 Hz during operation. Furthermore, this control approach can guarantee the best control performances in term of tracking accuracy, response speed, and robustness against external disturbances.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ji-Hwan Hwang ◽  
Young-Chang Kang ◽  
Jong-Wook Park ◽  
Dong W. Kim

In this paper, advanced interval type-2 fuzzy sliding mode control (AIT2FSMC) for robot manipulator is proposed. The proposed AIT2FSMC is a combination of interval type-2 fuzzy system and sliding mode control. For resembling a feedback linearization (FL) control law, interval type-2 fuzzy system is designed. For compensating the approximation error between the FL control law and interval type-2 fuzzy system, sliding mode controller is designed, respectively. The tuning algorithms are derived in the sense of Lyapunov stability theorem. Two-link rigid robot manipulator with nonlinearity is used to test and the simulation results are presented to show the effectiveness of the proposed method that can control unknown system well.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401878679
Author(s):  
Yanbing Liang ◽  
Heng Shi ◽  
Guangyuan Tian

A reduced-order approach to the adaptive fuzzy sliding mode control of the constrained manipulator is proposed. Based on the Udwadia–Kalaba motion constraint equation, the dynamic equation of the constrained manipulator with both ideal and non-ideal constraints is obtained. Considering the uncertainty of the terminal non-ideal constrained force and the chattering phenomenon of sliding mode control, the adaptive fuzzy and the sliding mode control method are combined to control the constrained manipulator. Because the system is constrained, the model order reduction method is innovatively used in the control algorithm. The stability of the system is proved by Lyapunov theorem. For demonstrating the effectiveness of the control algorithm, the 2-degree-of-freedom manipulator is taken as the research object. Finally, the high-precision control of the manipulator is achieved and the chattering phenomenon caused by the sliding mode control is weakened.


Sign in / Sign up

Export Citation Format

Share Document