scholarly journals A Fluid-Structure Interaction Model for Dam-Water Systems: Analytical Study and Application to Seismic Behavior

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Ricardo Faria ◽  
Sérgio Oliveira ◽  
Ana L. Silvestre

We consider a dam-water system modeled as a fluid-structure interaction, specifically, a coupled hyperbolic second-order problem, formulated in terms of the displacement of the structure and the fluid pressure. Firstly, we investigate the well posedness of the corresponding variational formulation using Galerkin approximations, energy estimates, and mollification. Then, we apply the finite element method along with the state-space representation of the discrete problem in order to perform a 3D numerical simulation of Cabril arch dam (Zêzere river, Portugal). The numerical model is validated by comparison with available experimental data from a monitoring vibration system installed in Cabril dam.

2016 ◽  
Vol 809 ◽  
pp. 360-389 ◽  
Author(s):  
Matthias Heil ◽  
Christopher D. Bertram

Syringomyelia is a medical condition in which one or more fluid-filled cavities (syrinxes) form in the spinal cord. The syrinxes often form near locations where the spinal subarachnoid space (SSS; the fluid-filled annular region surrounding the spinal cord) is partially obstructed. Previous studies showed that nonlinear interactions between the pulsatile fluid flow in the SSS and the elastic deformation of the tissues surrounding it can generate a fluid pressure distribution that would tend to drive fluid from the SSS into the syrinx if the tissue separating the two regions was porous. This provides a potential explanation for why a partial occlusion of the SSS can induce the growth of an already existing nearby syrinx. We study this hypothesis by analysing the mass transfer between the SSS and the syrinx, using a poroelastic fluid–structure interaction model of the spinal cord that includes a representation of the partially obstructed SSS, the syrinx and the poroelastic tissues surrounding these fluid-filled cavities. Our numerical simulations show that poroelastic fluid–structure interaction can indeed cause an increase (albeit relatively small) in syrinx volume. We analyse the seepage flows and show that their structure can be captured by an analytical model which explains why the increase in syrinx volume tends to be relatively small.


Author(s):  
Mohammad Khairul Habib Pulok ◽  
Uttam K. Chakravarty

Abstract Rotary-wing aircrafts are the best-suited option in many cases for its vertical take-off and landing capacity, especially in any congested area, where a fixed-wing aircraft cannot perform. Rotor aerodynamic loading is the major reason behind helicopter vibration, therefore, determining the aerodynamic loadings are important. Coupling among aerodynamics and structural dynamics is involved in rotor blade design where the unsteady aerodynamic analysis is also imperative. In this study, a Bo 105 helicopter rotor blade is considered for computational aerodynamic analysis. A fluid-structure interaction model of the rotor blade with surrounding air is considered where the finite element model of the blade is coupled with the computational fluid dynamics model of the surrounding air. Aerodynamic coefficients, velocity profiles, and pressure profiles are analyzed from the fluid-structure interaction model. The resonance frequencies and mode shapes are also obtained by the computational method. A small-scale model of the rotor blade is manufactured, and experimental analysis of similar contemplation is conducted for the validation of the numerical results. Wind tunnel and vibration testing arrangements are used for the experimental validation of the aerodynamic and vibration characteristics by the small-scale rotor blade. The computational results show that the aerodynamic properties of the rotor blade vary with the change of angle of attack and natural frequency changes with mode number.


2018 ◽  
Vol 9 (4) ◽  
pp. 739-751 ◽  
Author(s):  
Anna Maria Tango ◽  
Jacob Salmonsmith ◽  
Andrea Ducci ◽  
Gaetano Burriesci

2018 ◽  
Vol 21 (16) ◽  
pp. 813-823 ◽  
Author(s):  
John T. Wilson ◽  
Lowell T. Edgar ◽  
Saurabh Prabhakar ◽  
Marc Horner ◽  
Raoul van Loon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document