scholarly journals Improved Dynamical Particle Swarm Optimization Method for Structural Dynamics

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
W. D. Annicchiarico ◽  
M. Cerrolaza

A methodology to the multiobjective structural design of buildings based on an improved particle swarm optimization algorithm is presented, which has proved to be very efficient and robust in nonlinear problems and when the optimization objectives are in conflict. In particular, the behaviour of the particle swarm optimization (PSO) classical algorithm is improved by dynamically adding autoadaptive mechanisms that enhance the exploration/exploitation trade-off and diversity of the proposed algorithm, avoiding getting trapped in local minima. A novel integrated optimization system was developed, called DI-PSO, to solve this problem which is able to control and even improve the structural behaviour under seismic excitations. In order to demonstrate the effectiveness of the proposed approach, the methodology is tested against some benchmark problems. Then a 3-story-building model is optimized under different objective cases, concluding that the improved multiobjective optimization methodology using DI-PSO is more efficient as compared with those designs obtained using single optimization.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1539
Author(s):  
Joonwoo Lee ◽  
Won Kim

This paper proposes a novel Bare-Bones Particle Swarm Optimization (BBPSO) algorithm for solving high-dimensional problems. BBPSO is a variant of Particle Swarm Optimization (PSO) and is based on a Gaussian distribution. The BBPSO algorithm does not consider the selection of controllable parameters for PSO and is a simple but powerful optimization method. This algorithm, however, is vulnerable to high-dimensional problems, i.e., it easily becomes stuck at local optima and is subject to the “two steps forward, one step backward” phenomenon. This study improves its performance for high-dimensional problems by combining heterogeneous cooperation based on the exchange of information between particles to overcome the “two steps forward, one step backward” phenomenon and a jumping strategy to avoid local optima. The CEC 2010 Special Session on Large-Scale Global Optimization (LSGO) identified 20 benchmark problems that provide convenience and flexibility for comparing various optimization algorithms specifically designed for LSGO. Simulations are performed using these benchmark problems to verify the performance of the proposed optimizer by comparing the results of other variants of the PSO algorithm.



Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory





Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 597
Author(s):  
Kun Miao ◽  
Qian Feng ◽  
Wei Kuang

The particle swarm optimization algorithm (PSO) is a widely used swarm-based natural inspired optimization algorithm. However, it suffers search stagnation from being trapped into a sub-optimal solution in an optimization problem. This paper proposes a novel hybrid algorithm (SDPSO) to improve its performance on local searches. The algorithm merges two strategies, the static exploitation (SE, a velocity updating strategy considering inertia-free velocity), and the direction search (DS) of Rosenbrock method, into the original PSO. With this hybrid, on the one hand, extensive exploration is still maintained by PSO; on the other hand, the SE is responsible for locating a small region, and then the DS further intensifies the search. The SDPSO algorithm was implemented and tested on unconstrained benchmark problems (CEC2014) and some constrained engineering design problems. The performance of SDPSO is compared with that of other optimization algorithms, and the results show that SDPSO has a competitive performance.



Sensor Review ◽  
2014 ◽  
Vol 34 (3) ◽  
pp. 304-311 ◽  
Author(s):  
Pengfei Jia ◽  
Fengchun Tian ◽  
Shu Fan ◽  
Qinghua He ◽  
Jingwei Feng ◽  
...  

Purpose – The purpose of the paper is to propose a new optimization algorithm to realize a synchronous optimization of sensor array and classifier, to improve the performance of E-nose in the detection of wound infection. When an electronic nose (E-nose) is used to detect the wound infection, sensor array’s optimization and parameters’ setting of classifier have a strong impact on the classification accuracy. Design/methodology/approach – An enhanced quantum-behaved particle swarm optimization based on genetic algorithm, genetic quantum-behaved particle swarm optimization (G-QPSO), is proposed to realize a synchronous optimization of sensor array and classifier. The importance-factor (I-F) method is used to weight the sensors of E-nose by its degree of importance in classification. Both radical basis function network and support vector machine are used for classification. Findings – The classification accuracy of E-nose is the highest when the weighting coefficients of the I-F method and classifier’s parameters are optimized by G-QPSO. All results make it clear that the proposed method is an ideal optimization method of E-nose in the detection of wound infection. Research limitations/implications – To make the proposed optimization method more effective, the key point of further research is to enhance the classifier of E-nose. Practical implications – In this paper, E-nose is used to distinguish the class of wound infection; meanwhile, G-QPSO is used to realize a synchronous optimization of sensor array and classifier of E-nose. These are all important for E-nose to realize its clinical application in wound monitoring. Originality/value – The innovative concept improves the performance of E-nose in wound monitoring and paves the way for the clinical detection of E-nose.



Sign in / Sign up

Export Citation Format

Share Document