scholarly journals Lower First Permanent Molar with an Additional Root Diagnosis and Management

2019 ◽  
Vol 2019 ◽  
pp. 1-4
Author(s):  
Abdullah Mahmoud Riyahi

Three rooted lower first permanent molar represents one of the main anatomical variants which is a treatment challenge of clinicians. This study is aimed at presenting a case of a lower first molar with an additional root that was diagnosed and managed successfully using new techniques in endodontics. Tooth #46 was diagnosed as a necrotic pulp with symptomatic apical periodontitis. Different angle radiographs were obtained, and they clearly showed three roots. The procedure was completed under magnification and illumination using an operating microscope. The access cavity was modified to achieve straight line access for all the canals. Careful step-by-step instrumentation was performed using flexible NiTi rotary files. The canals were irrigated using 6% sodium hypochlorite. Afterwards, three-dimensional obturation was completed using warm vertical compaction. Knowledge of the anatomy and an early diagnosis are required to achieve high-quality root canal treatment.

Author(s):  
M. C. Moshobane ◽  
P. J. N. de Bruyn ◽  
M. N. Bester

Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (<i>Arctocephalus tropicalis</i>) and Antarctic fur seal (<i>Arctocephalus gazella</i>) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model’s accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.


Author(s):  
M. C. Moshobane ◽  
P. J. N. de Bruyn ◽  
M. N. Bester

Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (<i>Arctocephalus tropicalis</i>) and Antarctic fur seal (<i>Arctocephalus gazella</i>) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model’s accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.


2016 ◽  
Vol 10 (03) ◽  
pp. 439-446 ◽  
Author(s):  
John Sami Mamoun

ABSTRACTThis article reviews the basic clinical techniques of performing a maxillary molar endodontic access opening, starting from the initial access opening into the pulp chamber, to the point where a size #10 file has been advanced to the apices of all three or four (or more) canals. The article explains how the use of the dental surgical operating microscope or microscope-level loupes magnification of ×6–8 or greater, combined with head-mounted or coaxial illumination, improve the ability of a dentist to identify microscopic root canal orifices, which facilitates the efficient creation of conservative access openings with adequate straight-line access in maxillary molars. Magnified photos illustrate various microscopic anatomical structures or landmarks of the initial access opening. Techniques are explored for implementing an access opening for teeth with vital versus necrotic pulpal tissues. The article also explores the use of piezoelectric or ultrasonic instruments for revealing root canal orifices and for removing pulp stones or calcified pulpal tissue inside the pulp chamber.


Author(s):  
Antonia M. Milroy

In recent years many new techniques and instruments for 3-Dimensional visualization of electron microscopic images have become available. Higher accelerating voltage through thicker sections, photographed at a tilt for stereo viewing, or the use of confocal microscopy, help to analyze biological material without the necessity of serial sectioning. However, when determining the presence of neurotransmitter receptors or biochemical substances present within the nervous system, the need for good serial sectioning (Fig. 1+2) remains. The advent of computer assisted reconstruction and the possibility of feeding information from the specimen viewing chamber directly into a computer via a camera mounted on the electron microscope column, facilitates serial analysis. Detailed information observed at the subcellular level is more precise and extensive and the complexities of interactions within the nervous system can be further elucidated.We emphasize that serial ultra thin sectioning can be performed routinely and consistently in multiple user electron microscopy laboratories. Initial tissue fixation and embedding must be of high quality.


Author(s):  
S. P. Eron’ko ◽  
M. Yu. Tkachev ◽  
E. V. Oshovskaya ◽  
B. I. Starodubtsev ◽  
S. V. Mechik

Effective application of slag-forming mixtures (SFM), being fed into continuous castingg machine (CCM) moulds, depends on their even distribution on the melt surface. Manual feeding of the SFM which is widely usedd does not provide this condition, resulting in the necessity to actualize the work to elaborate systems of SFM mechanized feedingg into moulds of various types CCM. A concept of the designing of a system of SFM feeding into CCM moulds presented with the ratte strictly correspondent to the casting speed and providing formation of an even layer of fine material of given thickness on the whoole surface of liquid steel. The proposed methods of designing of the SFM mechanized feeding systems based on three-dimensional computer simulation with the subsequent verification of the correctness of the adopted technical solutions on field samples. Informattion is presented on the design features of the adjusted facilities intended for continuous supply of finely granulated and powder mixtuures on metal mirror in moulds at the production of high-quality billets, blooms and slabs. Variants of mechanical and pneumo-mechaanical SFM supply elaborated. At the mechanical supply the fine material from the feeding hopper is moved at a adjusted distance bby a rigid horizontally located screw. At the pneumo-mechanical supply the metered doze of the granular mixture is delivered by a sshort vertical screw, the lower part of which is located in the mixing chamber attached from below to the hopper and equipped with ann ejector serving for pneumatic supply of the SFM in a stream of transporting gas. It was proposed to use flexible spiral screws in the ffuture facilities of mechanical SFM feeding. It will enable to eliminate the restrictions stipulated by the lack of free surface for locatiion of the facility in the working zone of the tundish, as well as to decrease significantly the mass of its movable part and to decreaase the necessary power of the carriage moving mechanism driver. The novelty of the proposed technical solutions is protected by thhree patents. The reduction of 10–15% in the consumption of slag-forming mixtures during the transition from manual to mechanizeed feeding confirmed. The resulting economic effect from the implementation of technical development enables to recoup the costs inncurred within 8–10 months.


2018 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Prof. Dr. Jamal Aziz Mehdi

The biological objectives of root canal treatment have not changed over the recentdecades, but the methods to attain these goals have been greatly modified. Theintroduction of NiTi rotary files represents a major leap in the development ofendodontic instruments, with a wide variety of sophisticated instruments presentlyavailable (1, 2).Whatever their modification or improvement, all of these instruments have onething in common: they consist of a metal core with some type of rotating blade thatmachines the canal with a circular motion using flutes to carry the dentin chips anddebris coronally. Consequently, all rotary NiTi files will machine the root canal to acylindrical bore with a circular cross-section if the clinician applies them in a strictboring manner


2020 ◽  
Vol 11 (3) ◽  
pp. 3316-3321
Author(s):  
Samrudhi Khatod ◽  
Anuja Ikhar ◽  
Pradnya Nikhade ◽  
Manoj chandak

A Patient came with the complaint of pain in the lower right back region of the jaw. Root canal treatment was planned. While preparing for the bio-mechanical procedure, the Hand pro taper fractured in the apical third. Iatrogenic occurred as a result of the fracture of the endodontic instrument. Retrieval of the fractured instrument was planned to complete the cleaning and shaping of the canal. The removal of the fractured instrument was planned to be done under the Dental Operating Microscope. The use of an operating microscope enhanced the illumination and the magnification of the instrument. This illumination and magnification helped in the precision of removal. The ultrasonic tip enabled to reach of the fractured instrument in the canal and loosen the dentin around the fractured instrument. It allowed easy retrieval of the fractured instrument. During the retrieval procedure, the fractured instrument was bypassed before the use of the ultrasonic tip. After the removal of the fractured instrument, cleaning and shaping were completed, followed by obturation, definitive restoration, and prosthesis. As the removal of the fractured instrument enabled complete cleaning and shaping, it improved the prognosis of the case. When the endodontic instrument gets fractured, it should be analyzed over the radiograph to assess the fracture level, the anatomy of the root canal, size of the fractured instrument, check accessibility, stage of fracture, etc. If all the above criteria are met with the removal of the instrument only then, replacement should be tried. Otherwise, it may lead to a severe loss of root dentin, decreasing fracture resistance of the root.


2021 ◽  
Vol 11 (11) ◽  
pp. 5086
Author(s):  
Mazen F. Alkahtany ◽  
Saqib Ali ◽  
Abdul Khabeer ◽  
Shafqat A. Shah ◽  
Khalid H. Almadi ◽  
...  

This study aimed to investigate variations in the root canal morphology of maxillary second premolar (MSP) teeth using microcomputed tomography (micro-CT). Sixty (N = 60) human extracted MSPs were collected and prepared for micro-CT scanning. The duration for scanning a single sample ranged between 30 and 40 min and a three-dimensional (3-D) image was obtained for all the MSPs. The images were evaluated by a single observer who recorded the canal morphology type, number of roots, canal orifices, apical foramina(s), apical delta(s), and accessory canals. The root canal configuration was categorized in agreement with Vertucci’s classification, and any configuration not in agreement with Vertucci’s classification was reported as an “additional canal configuration”. Descriptive statistics (such as mean percentages) were calculated using SPSS software. The most common types agreeing with Vertucci’s classification (in order of highest to lowest incidence) were types I, III, V, VII, II, and VI. The teeth also exhibited four additional configurations that were different from Vertucci’s classification: types 2-3, 1-2-3, 2-1-2-1, and 1-2-1-3. A single root was found in 96.7% and the majority of the samples demonstrated two canals (73.3%). Further, 80% of the teeth showed one canal orifice. The number of apical foramina’s in the teeth was variable, with 56.7% having solitary apical foramen. The accessory canal was found in 33.3%, and apical delta was found in only 20% of the samples. Variable morphology of the MSPs was detected in our study. The canal configuration most prevalent was type 1; however, the results also revealed some additional canal types.


2021 ◽  
Vol 11 (13) ◽  
pp. 5931
Author(s):  
Ji’an You ◽  
Zhaozheng Hu ◽  
Chao Peng ◽  
Zhiqiang Wang

Large amounts of high-quality image data are the basis and premise of the high accuracy detection of objects in the field of convolutional neural networks (CNN). It is challenging to collect various high-quality ship image data based on the marine environment. A novel method based on CNN is proposed to generate a large number of high-quality ship images to address this. We obtained ship images with different perspectives and different sizes by adjusting the ships’ postures and sizes in three-dimensional (3D) simulation software, then 3D ship data were transformed into 2D ship image according to the principle of pinhole imaging. We selected specific experimental scenes as background images, and the target ships of the 2D ship images were superimposed onto the background images to generate “Simulation–Real” ship images (named SRS images hereafter). Additionally, an image annotation method based on SRS images was designed. Finally, the target detection algorithm based on CNN was used to train and test the generated SRS images. The proposed method is suitable for generating a large number of high-quality ship image samples and annotation data of corresponding ship images quickly to significantly improve the accuracy of ship detection. The annotation method proposed is superior to the annotation methods that label images with the image annotation software of Label-me and Label-img in terms of labeling the SRS images.


Sign in / Sign up

Export Citation Format

Share Document