scholarly journals The New Odd Log-Logistic Generalized Inverse Gaussian Regression Model

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Julio Cezar Souza Vasconcelos ◽  
Gauss M. Cordeiro ◽  
Edwin M. M. Ortega ◽  
Elton G. Araújo

We define a new four-parameter model called the odd log-logistic generalized inverse Gaussian distribution which extends the generalized inverse Gaussian and inverse Gaussian distributions. We obtain some structural properties of the new distribution. We construct an extended regression model based on this distribution with two systematic structures, which can provide more realistic fits to real data than other special regression models. We adopt the method of maximum likelihood to estimate the model parameters. In addition, various simulations are performed for different parameter settings and sample sizes to check the accuracy of the maximum likelihood estimators. We provide a diagnostics analysis based on case-deletion and quantile residuals. Finally, the potentiality of the new regression model to predict price of urban property is illustrated by means of real data.

Risks ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 19
Author(s):  
George Tzougas ◽  
Himchan Jeong

This article presents the Exponential–Generalized Inverse Gaussian regression model with varying dispersion and shape. The EGIG is a general distribution family which, under the adopted modelling framework, can provide the appropriate level of flexibility to fit moderate costs with high frequencies and heavy-tailed claim sizes, as they both represent significant proportions of the total loss in non-life insurance. The model’s implementation is illustrated by a real data application which involves fitting claim size data from a European motor insurer. The maximum likelihood estimation of the model parameters is achieved through a novel Expectation Maximization (EM)-type algorithm that is computationally tractable and is demonstrated to perform satisfactorily.


2019 ◽  
Vol 16 (4) ◽  
pp. 0937
Author(s):  
Saad Et al.

In this paper, for the first time we introduce a new four-parameter model called the Gumbel- Pareto distribution by using the T-X method. We obtain some of its mathematical properties. Some structural properties of the new distribution are studied. The method of maximum likelihood is used for estimating the model parameters. Numerical illustration and an application to a real data set are given to show the flexibility and potentiality of the new model.


2020 ◽  
Vol 4 (2) ◽  
pp. 327-340
Author(s):  
Ahmed Ali Hurairah ◽  
Saeed A. Hassen

In this paper, we introduce a new family of continuous distributions called the beta transmuted Dagum distribution which extends the beta and transmuted familys. The genesis of the beta distribution and transmuted map is used to develop the so-called beta transmuted Dagum (BTD) distribution. The hazard function, moments, moment generating function, quantiles and stress-strength of the beta transmuted Dagum distribution (BTD) are provided and discussed in detail. The method of maximum likelihood estimation is used for estimating the model parameters. A simulation study is carried out to show the performance of the maximum likelihood estimate of parameters of the new distribution. The usefulness of the new model is illustrated through an application to a real data set.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Marcelo Bourguignon ◽  
Indranil Ghosh ◽  
Gauss M. Cordeiro

The transmuted family of distributions has been receiving increased attention over the last few years. For a baselineGdistribution, we derive a simple representation for the transmuted-Gfamily density function as a linear mixture of theGand exponentiated-Gdensities. We investigate the asymptotes and shapes and obtain explicit expressions for the ordinary and incomplete moments, quantile and generating functions, mean deviations, Rényi and Shannon entropies, and order statistics and their moments. We estimate the model parameters of the family by the method of maximum likelihood. We prove empirically the flexibility of the proposed model by means of an application to a real data set.


2016 ◽  
Vol 39 (3) ◽  
Author(s):  
Mohammad Shakil ◽  
B.M. Golam Kibria ◽  
Jai Narain Singh

Recently, a generalization of the Pearson differential equation has appeared in the literature, from which a vast majority of continuous probability density functions (pdf’s) can be generated, known as the generalized Pearson system of continuous probability distributions. This paper derives a new family of distributions based on the generalized Pearson differential equation, which is a natural generalization of the generalized inverse Gaussian distribution. Some characteristics of the new distribution are obtained.Plots for the cumulative distribution function, pdf and hazard function, tableswith percentiles and with values of skewness and kurtosis are provided. Itis observed that the new distribution is skewed to the right and bears mostof the properties of skewed distributions. As a motivation, the statistical applicationsof the results to a problem of forestry have been provided. It is found that our newly proposed model fits better than gamma, log-normal and inverse Gaussian distributions. Since many researchers have studied the use of the generalized inverse Gaussian distributions in the fields of biomedicine, demography, environmental and ecological sciences, finance, lifetime data, reliability theory, traffic data, etc., we hope the findings of the paper will be useful for the practitioners in various fields of theoretical and applied sciences.


Stats ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 32-47
Author(s):  
Gauss Cordeiro ◽  
Maria de Lima ◽  
Edwin Ortega ◽  
Adriano Suzuki

We propose an extended fatigue lifetime model called the odd log-logistic Birnbaum–Saunders–Poisson distribution, which includes as special cases the Birnbaum–Saunders and odd log-logistic Birnbaum–Saunders distributions. We obtain some structural properties of the new distribution. We define a new extended regression model based on the logarithm of the odd log-logistic Birnbaum–Saunders–Poisson random variable. For censored data, we estimate the parameters of the regression model using maximum likelihood. We investigate the accuracy of the maximum likelihood estimates using Monte Carlo simulations. The importance of the proposed models, when compared to existing models, is illustrated by means of two real data sets.


Author(s):  
Mohamed G. Khalil ◽  
Wagdy M. Kamel

A new three-parameter life parametric model called the Marshall-Olkin generalized Weibull is defined and studied. Relevant properties are mathematically derived and analyzed. The new density exhibits various important symmetric and asymmetric shapes with different useful kurtosis. The new failure rate can be “constant”, “upside down-constant (reversed U-HRF-constant)”, “increasing then constant”, “monotonically increasing”, “J-HRF” and “monotonically decreasing”. The method of maximum likelihood is employed to estimate the unknown parameters. A graphical simulation is performed to assess the performance of the maximum likelihood estimation. We checked and proved empirically the importance, applicability and flexibility of the new Weibull model in modeling various symmetric and asymmetric types of data. The new distribution has a high ability to model different symmetric and asymmetric types of data.


2016 ◽  
Vol 45 (3) ◽  
pp. 43-69 ◽  
Author(s):  
Broderick Oluyede ◽  
Susan Foya ◽  
Gayan Warahena-Liyanage ◽  
Shujiao Huang

In this paper, a new generalized distribution called the log-logisticWeibull (LLoGW) distribution is developed and presented. This dis-tribution contain the log-logistic Rayleigh (LLoGR), log-logistic expo-nential (LLoGE) and log-logistic (LLoG) distributions as special cases.The structural properties of the distribution including the hazard func-tion, reverse hazard function, quantile function, probability weightedmoments, moments, conditional moments, mean deviations, Bonferroniand Lorenz curves, distribution of order statistics, L-moments and Renyientropy are derived. Method of maximum likelihood is used to estimatethe parameters of this new distribution. A simulation study to examinethe bias, mean square error of the maximum likelihood estimators andwidth of the condence intervals for each parameter is presented. Finally, real data examples are presented to illustrate the usefulness and applicability of the model.


Author(s):  
Abraham Iorkaa Asongo ◽  
Innocent Boyle Eraikhuemen ◽  
Emmanuel Remi Omoboriowo ◽  
Isa Abubakar Ibrahim

This article proposed a Poisson based continuous probability distribution called Poisson-Rayleigh distribution. Some properties of the new distribution such as quantile and reliability functions and other useful measures were obtained. The model parameters were estimated using the method of maximum likelihood. The usefulness of the new distribution was proven empirically using real life datasets.


Sign in / Sign up

Export Citation Format

Share Document