scholarly journals On the Observability of Leader-Based Multiagent Systems with Fixed Topology

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Bo Liu ◽  
Ningsheng Xu ◽  
Housheng Su ◽  
Licheng Wu ◽  
Jiahui Bai

This paper investigates the observability of first-order, second-order, and high-order leader-based multiagent systems (MASs) with fixed topology, respectively. Some new algebraic and graphical characterizations of the observability for the first-order MASs are established based on agreement protocols. Moreover, under the same leader-following framework with the predefined topology and leader assignment, the observability conditions for systems of double-integrator and high-integrator agents are also obtained. Finally, the effectiveness of the theoretical results is verified by numerical examples and simulations.

2011 ◽  
Vol 2011 ◽  
pp. 1-11
Author(s):  
Xin-Lei Feng ◽  
Ting-Zhu Huang ◽  
Jin-Liang Shao

For second-order and high-order dynamic multiagent systems with multiple leaders, the coordination schemes that all the follower agents flock to the polytope region formed by multiple leaders are considered. Necessary and sufficient conditions which the follower agents can enter the polytope region by the leaders are obtained. Finally, numerical examples are given to illustrate our theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hong Xia ◽  
Ting-Zhu Huang ◽  
Jin-Liang Shao ◽  
Jun-Yan Yu

This paper is concerned with a leader-following consensus problem of second-order multiagent systems with a constant acceleration leader and time-varying delays. At first, a distributed control protocol for every agent to track the leader is proposed; then by utilizing the Lyapunov-Razumikhin function, the convergence analysis under both fixed and switching interconnection topologies is investigated. For the case of fixed topology, a sufficient and necessary condition is obtained, and for the case of switching topology, a sufficient condition is derived under some assumptions. Finally, simulation examples are provided to demonstrate the effectiveness of the theoretical results.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mengji Shi ◽  
Kaiyu Qin ◽  
Ping Li ◽  
Jun Liu

Consensus of first-order and second-order multiagent systems has been wildly studied. However, the convergence of high-order (especially the third-order to the sixth-order) state variables is also ubiquitous in various fields. The paper handles consensus problems of high-order multiagent systems in the presence of multiple time delays. Obtained by a novel frequency domain approach which properly resolves the challenges associated with nonuniform time delays, the consensus conditions for the first-order and second-order systems are proven to be nonconservative, and those for the third-order to the sixth-order systems are provided in the form of simple inequalities. The method revealed in this article is applicable to arbitrary-order systems, and the results are less conservative than those based on Lyapunov approaches, because it roots in sufficient and necessary criteria of stabilities. Simulations are carried out to validate the theoretical results.


2014 ◽  
Vol 6 (4) ◽  
pp. 419-435 ◽  
Author(s):  
Seakweng Vong ◽  
Zhibo Wang

AbstractIn this paper, we study a high-order compact difference scheme for the fourth-order fractional subdiffusion system. We consider the situation in which the unknown function and its first-order derivative are given at the boundary. The scheme is shown to have high order convergence. Numerical examples are given to verify the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Runsha Dong

This paper concerns the problem of consensus tracking for multiagent systems with a dynamical leader. In particular, it proposes the corresponding explicit control laws for multiple first-order nonlinear systems, second-order nonlinear systems, and quite general nonlinear systems based on the leader-follower and the tree shaped network topologies. Several numerical simulations are given to verify the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hong Xia ◽  
Ting-Zhu Huang ◽  
Jin-Liang Shao ◽  
Jun-Yan Yu

A formation control problem for second-order multiagent systems with time-varying delays is considered. First, a leader-following consensus protocol is proposed for theoretical preparation. With the help of Lyapunov-Krasovskii functional, a sufficient condition under this protocol is derived for stability of the multiagent systems. Then, the protocol is extended to the formation control based on a multiple leaders’ architecture. It is shown that the agents will attain the expected formation. Finally, some simulations are provided to demonstrate the effectiveness of our theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Bo Liu ◽  
Hongke Feng ◽  
Li Wang ◽  
Rong Li ◽  
Junyan Yu ◽  
...  

This paper proposes a new second-order discrete-time multiagent model and addresses the controllability of second-order multiagent system with multiple leaders and general dynamics. The leaders play an important role in governing the other member agents to achieve any desired configuration. Some sufficient and necessary conditions are given for the controllability of the second-order multiagent system. Moreover, the speed controllability of the second-order multiagent system with general dynamics is discussed. Particularly, it is shown that the controllability of the whole system relies on the number of leaders and the connectivity between the leaders and the members. Numerical examples illustrate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document