scholarly journals GSK-3 Inhibitor Promotes Neuronal Cell Regeneration and Functional Recovery in a Rat Model of Spinal Cord Injury

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Fei Lei ◽  
Wen He ◽  
Xinggui Tian ◽  
Qingzhong Zhou ◽  
Lipeng Zheng ◽  
...  

The reparative process following spinal cord injury (SCI) is extremely complicated. Cells in the microenvironment express multiple inhibitory factors that affect axonal regeneration over a prolonged period of time. The axon growth inhibitory factor glycogen synthase kinase-3 (GSK-3) is an important factor during these processes. TDZD-8 (4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione) is the most effective and specific non-ATP-competitive inhibitor of GSK-3. Here, we show that administering TDZD-8 after SCI was associated with significantly inhibited neuronal apoptosis, upregulated GAP-43 expression, increased density of cortical spinal tract fibers around areas of injury, and increased Basso, Beattie, and Bresnahan (BBB) scores in the lower limbs. These findings support the notion that GSK-3 inhibitors promote neuronal cell regeneration and lower limb functional recovery.

2009 ◽  
Vol 26 (7) ◽  
pp. 955-964 ◽  
Author(s):  
Tomohiro Miyashita ◽  
Masao Koda ◽  
Keiko Kitajo ◽  
Masashi Yamazaki ◽  
Kazuhisa Takahashi ◽  
...  

Author(s):  
Itzhak Fischer ◽  
Shaoping Hou

Spinal cord injury is characterized by a complex set of events, which include the disruption of connectivity between the brain and the periphery with little or no spontaneous regeneration, resulting in motor, sensory and autonomic deficits. Transplantation of neural stem cells has the potential to provide the cellular components for repair of spinal cord injury (SCI), including oligodendrocytes, astrocytes, and neurons. The ability to generate graft-derived neurons can be used to restore connectivity by formation of functional relays. The critical requirements for building a relay are to achieve long-term survival of graft-derived neurons and promote axon growth into and out of the transplant. Recent studies have demonstrated that mixed populations of glial and neuronal progenitors provide a permissive microenvironment for survival and differentiation of early-stage neurons, but inclusion of growth factors with the transplant or cues for directional axon growth outside the transplant may also be needed. Other important considerations include the timing of the transplantation and the selection of a population of neurons that maximizes the effective transmission of signals. In some experiments, the essential neuronal relay formation has been developed in both sensory and motor systems related to locomotion, respiration, and autonomic functions. Despite impressive advances, the poor regenerative capacity of adult CNS combined with the inhibitory environment of the injury remain a challenge for achieving functional connectivity via supraspinal tracts, but it is possible that recruitment of local propriospinal neurons may facilitate the formation of relays. Furthermore, it is clear that the new connections will not be identical to the original innervation, and therefore there needs to be a mechanism for translating the resulting connectivity into useful function. A promising strategy is to mimic the process of neural development by exploiting the remarkable plasticity associated with activity and exercise to prune and strengthen synaptic connections. In the meantime, the sources of neural cells for transplantation are rapidly expanding beyond the use of fetal CNS tissue and now include pluripotent ES and iPS cells as well as cells obtained by direct reprogramming. These new options can provide considerable advantages with respect to preparation of cell stocks and the use of autologous grafting, but they present challenges of complex differentiation protocols and risks of tumor formation. It is important to note that although neural stem cell transplantation into the injured spinal cord is primarily designed to provide preclinical data for the potential treatment of patients with SCI, it can also be used to develop analogous protocols for repair of neuronal circuits in other regions of the CNS damaged by injury or neurodegeneration. The advantages of the spinal cord system include well-defined structures and a large array of quantitative functional tests. Therefore, studying the formation of a functional relay will address the fundamental aspects of neuronal cell replacement without the additional complexities associated with brain circuits.


2017 ◽  
Vol 38 (6) ◽  
pp. 1366-1382 ◽  
Author(s):  
Zoe C. Hesp ◽  
Rim Y. Yoseph ◽  
Ryusuke Suzuki ◽  
Peter Jukkola ◽  
Claire Wilson ◽  
...  

Biomaterials ◽  
2014 ◽  
Vol 35 (16) ◽  
pp. 4610-4626 ◽  
Author(s):  
Yosuke Ohtake ◽  
Dongsun Park ◽  
P.M. Abdul-Muneer ◽  
Hui Li ◽  
Bin Xu ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dayu Pan ◽  
Fuhan Yang ◽  
Shibo Zhu ◽  
Yongjin Li ◽  
Guangzhi Ning ◽  
...  

AbstractSpinal cord injury (SCI) can lead to severe loss of motor and sensory function with high disability and mortality. The effective treatment of SCI remains unknown. Here we find systemic injection of TGF-β neutralizing antibody induces the protection of axon growth, survival of neurons, and functional recovery, whereas erythropoietin-producing hepatoma interactor B2 (EphrinB2) expression and fibroblasts distribution are attenuated. Knockout of TGF-β type II receptor in fibroblasts can also decrease EphrinB2 expression and improve spinal cord injury recovery. Moreover, miR-488 was confirmed to be the most upregulated gene related to EphrinB2 releasing in fibroblasts after SCI and miR-488 initiates EphrinB2 expression and physical barrier building through MAPK signaling after SCI. Our study points toward elevated levels of active TGF-β as inducer and promoters of fibroblasts distribution, fibrotic scar formation, and EphrinB2 expression, and deletion of global TGF-β or the receptor of TGF-β in Col1α2 lineage fibroblasts significantly improve functional recovery after SCI, which suggest that TGF-β might be a therapeutic target in SCI.


Sign in / Sign up

Export Citation Format

Share Document