scholarly journals Proliferating NG2-Cell-Dependent Angiogenesis and Scar Formation Alter Axon Growth and Functional Recovery After Spinal Cord Injury in Mice

2017 ◽  
Vol 38 (6) ◽  
pp. 1366-1382 ◽  
Author(s):  
Zoe C. Hesp ◽  
Rim Y. Yoseph ◽  
Ryusuke Suzuki ◽  
Peter Jukkola ◽  
Claire Wilson ◽  
...  
Biomedicines ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 258
Author(s):  
JeongHoon Kim ◽  
Hari Prasad Joshi ◽  
Kyoung-Tae Kim ◽  
Yi Young Kim ◽  
Keundong Yeo ◽  
...  

Neuroprotective measures by preventing secondary spinal cord injury (SCI) are one of the main strategies for repairing an injured spinal cord. Fasudil and menthol may be potent neuroprotective agents, which act by inhibiting a rho-associated protein kinase (ROCK) and suppressing the inflammatory response, respectively. We hypothesized that combined treatment of fasudil and menthol could improve functional recovery by decreasing inflammation, apoptosis, and glial scar formation. We tested our hypothesis by administering fasudil and menthol intraperitoneally (i.p.) to female Sprague Dawley rats after moderate static compression (35 g of impounder for 5 min) of T10 spinal cord. The rats were randomly divided into five experimental groups: (i) sham animals received laminectomy alone, (ii) injured (SCI) and untreated (saline 0.2 mL/day, i.p.) rats, (iii) injured (SCI) rats treated with fasudil (10 mg/kg/day, i.p.) for two weeks, (iv) injured (SCI) rats treated with menthol (10 mg/kg/day, i.p.) for twoweeks, (v) injured (SCI) rats treated with fasudil (5 mg/kg/day, i.p.) and menthol (10 mg/kg/day, i.p.) for two weeks. Compared to single treatment groups, combined treatment of fasudil and menthol demonstrated significant functional recovery and pain amelioration, which, thereby, significantly reduced inflammation, apoptosis, and glial/fibrotic scar formation. Therefore, combined treatment of fasudil and menthol may provide effective amelioration of spinal cord dysfunction by a synergistic effect of fasudil and menthol.


2009 ◽  
Vol 26 (7) ◽  
pp. 955-964 ◽  
Author(s):  
Tomohiro Miyashita ◽  
Masao Koda ◽  
Keiko Kitajo ◽  
Masashi Yamazaki ◽  
Kazuhisa Takahashi ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Fei Lei ◽  
Wen He ◽  
Xinggui Tian ◽  
Qingzhong Zhou ◽  
Lipeng Zheng ◽  
...  

The reparative process following spinal cord injury (SCI) is extremely complicated. Cells in the microenvironment express multiple inhibitory factors that affect axonal regeneration over a prolonged period of time. The axon growth inhibitory factor glycogen synthase kinase-3 (GSK-3) is an important factor during these processes. TDZD-8 (4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione) is the most effective and specific non-ATP-competitive inhibitor of GSK-3. Here, we show that administering TDZD-8 after SCI was associated with significantly inhibited neuronal apoptosis, upregulated GAP-43 expression, increased density of cortical spinal tract fibers around areas of injury, and increased Basso, Beattie, and Bresnahan (BBB) scores in the lower limbs. These findings support the notion that GSK-3 inhibitors promote neuronal cell regeneration and lower limb functional recovery.


Biomaterials ◽  
2014 ◽  
Vol 35 (16) ◽  
pp. 4610-4626 ◽  
Author(s):  
Yosuke Ohtake ◽  
Dongsun Park ◽  
P.M. Abdul-Muneer ◽  
Hui Li ◽  
Bin Xu ◽  
...  

2015 ◽  
Vol 26 (2) ◽  
Author(s):  
Haruo Kanno ◽  
Damien D. Pearse ◽  
Hiroshi Ozawa ◽  
Eiji Itoi ◽  
Mary Bartlett Bunge

AbstractTransplantation of Schwann cells (SCs) is a promising therapeutic strategy for spinal cord repair. The introduction of SCs into the injured spinal cord has been shown to reduce tissue loss, promote axonal regeneration, and facilitate myelination of axons for improved sensorimotor function. The pathology of spinal cord injury (SCI) comprises multiple processes characterized by extensive cell death, development of a milieu inhibitory to growth, and glial scar formation, which together limits axonal regeneration. Many studies have suggested that significant functional recovery following SCI will not be possible with a single therapeutic strategy. The use of additional approaches with SC transplantation may be needed for successful axonal regeneration and sufficient functional recovery after SCI. An example of such a combination strategy with SC transplantation has been the complementary administration of neuroprotective agents/growth factors, which improves the effect of SCs after SCI. Suspension of SCs in bioactive matrices can also enhance transplanted SC survival and increase their capacity for supporting axonal regeneration in the injured spinal cord. Inhibition of glial scar formation produces a more permissive interface between the SC transplant and host spinal cord for axonal growth. Co-transplantation of SCs and other types of cells such as olfactory ensheathing cells, bone marrow mesenchymal stromal cells, and neural stem cells can be a more effective therapy than transplantation of SCs alone following SCI. This article reviews some of the evidence supporting the combination of SC transplantation with additional strategies for SCI repair and presents a prospectus for achieving better outcomes for persons with SCI.


Sign in / Sign up

Export Citation Format

Share Document