scholarly journals In Vitro Evaluation of Proliferation and Migration Behaviour of Human Bone Marrow-Derived Mesenchymal Stem Cells in Presence of Platelet-Rich Plasma

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Anh Thi Mai Nguyen ◽  
Ha Le Bao Tran ◽  
Thuy Anh Vu Pham

Objective. To access the effects of platelet-rich plasma (PRP) on the behaviour of human bone marrow-derived mesenchymal stem cells (hBMSCs), including proliferation and migration. Methods. PRP was diluted with DMEM/F12, resulting in concentrations of 1%, 2%, and 5%. The proliferation of hBMSCs was examined by 2 methods: cell-number counting with the haemocytometer method and the colony-forming unit-fibroblast (CFU-F) assay. Cell migration was evaluated using the scratch wound healing (SWH) assay; after that, the recorded digital images were analysed by the Image-Analysis J 1.51j8 software to compare the cell-free areas between groups after 0, 24, and 48 hours. Results. hBMSCs cultured in DMEM/F12 at PRP concentrations of 1%, 2%, and 5% were all able to proliferate and migrate. In the 5% PRP group, hBMSCs proliferated greatly with a significantly higher cell number than reported for all other groups on days 5, 7, and 9. CFU-Fs were observed in all groups, except for the negative control group. The SWH assay demonstrated that hBMSCs cultured in 2% and 5% PRP almost filled the artificial wound scratch and significantly migrated more than those of all other groups at both 24 h and 48 h. Conclusion. This study indicated that, due to the significant enhancement of cell proliferation and migration, 5% PRP might be the optimal concentration that should be used to promote the potential of hBMSCs in wound healing.

2018 ◽  
Vol 4 (1) ◽  
pp. 68-72 ◽  
Author(s):  
Aditya Wardhana ◽  
Isabella Kurnia Liem ◽  
Lauda Feroniasanti ◽  
Dyah Juliana Pudjiti ◽  
Fajar Mujadid ◽  
...  

Background : Severe burns are among the commonly occurring trauma with lethal outcome. One of the important aspects of severe burn therapy is to quickly achieve wound healing. Previous reports indicated that mesenchymal stem cells (MSCs) therapy contributes in facilitating better wound healing. In this report, we investigated the effects of MSCs derived from human bone marrow and umbilical cord on wound healing in patients with severe burns and its mechanism. Method : We performed human bone marrow and human umbilical cord MSCs therapy on 3 severe burns patients. Two of the patients had inadequate donor to close raw surface with skin graft, whilst one patient had infected chronic burn wound which have failed to epithelialize despite repeated attempts of skin graft and wound care. Result : We observed that MSCs therapy significantly accelerated wound healing. The effects after MSCs migrated into wound were decreased infiltration of inflammatory cells and faster epithelialization. Conclusion : This study suggests that MSCs therapy has positive effects in improving wound healing in severe burns patients. Data provided by this research may serve as theoretical basis for further study of MSCs application in burn wound therapy.


2020 ◽  
Author(s):  
Tiechao Jiang ◽  
Zhongyu Wang ◽  
Ji Sun

Abstract Background: Cutaneous wound healing represents a morphogenetic response to injury, and it designed to restore anatomic and physiological function. Human bone marrow mesenchymal stem cells-derived exosomes (hBM-MSCs-Ex) is a promising source for cell-free therapy and skin regeneration. Methods: In this study, we investigated the therapeutic effects and underlying mechanism of hBM-MSCs-Ex on cutaneous wound healing in rats. We assessment of the role of hBM-MSCs-Ex in the two type of skin cell: human keratinocytes (HaCaT) and human dermal fibroblasts (HDFs). proliferation in vitro . Furthermore, we used a full-thickness skin wounds to evaluate the effects of hBM-MSCs-Ex on cutaneous wound healing in vivo. Results: Our results demonstrated that hBM-MSCs-Ex promote both two type of skin cell growth effectively and accelerate the cutaneous wound healing ( p <0.01). Then, we found that hBM-MSCs-Ex significantly down-regulated TGF-β1, Smad2, Smad3, and Smad4 expression, while up-regulated TGF-β3 and Smad7 expression ( p <0.05). Conclusions: In conclusion, our findings indicated that hBM-MSCs-Ex effectively promote the cutaneous wound healing through inhibiting the TGF-β/Smad signal pathway, providing a new sight for the therapeutic strategy of hBM-MSCs-Ex for the treatment of cutaneous wounds.


2021 ◽  
Author(s):  
Xia Yi ◽  
Ping Wu ◽  
Jianyun Liu ◽  
Shan He ◽  
Ying Gong ◽  
...  

Adipogenesis and osteoblastogenesis (adipo-osteoblastogenesis) are closely related processes involving with the phosphorylation of numerous cytoplasmic proteins and key transcription factors.


2012 ◽  
Vol 7 (6) ◽  
pp. 757-767 ◽  
Author(s):  
Sarah L Boddy ◽  
Wei Chen ◽  
Ricardo Romero-Guevara ◽  
Lucksy Kottam ◽  
Illaria Bellantuono ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document