scholarly journals Research on the Disaster-Inducing Mechanism of Coal-Gas Outburst

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Fengxiang Nie ◽  
Honglei Wang ◽  
Liming Qiu

In China, coal-gas outburst is seriously affecting safety of the coal mine. To improve the safety status of underground coal mining, this work investigated the evolution process and occurrence mechanism of coal-gas outburst under the coupling action of stress and gas. Results show that increasing either gas pressure or in-situ stress can make coal destroy and destabilize, and the contribution of gas pressure to coal failure is twice that of in-situ stress. In ultradeep coal mining, coal-gas outburst may occur even under the condition of low gas pressure due to large in-situ stress. Moreover, the larger the mining depth is, the lower the gas index is required for disaster occurrence. The results have certain guiding significance for coal energy mining and the control of coal-gas outburst in deep coal mining.

2019 ◽  
Vol 23 (3 Part A) ◽  
pp. 1547-1553
Author(s):  
Yanan Gao ◽  
Guanghui Dong ◽  
Hao Wang ◽  
Xueyun Chang

As the increase of the mining depth in China, the underground temperature, in situ stress and CH4 gas pressure also increase. Such factors have great influences on the gas drainage engineering. In this paper, the discontinuous deformation analysis is used to model the stress relief effect of drilling and slot. The effects of slot width, height, and ground pressure was analyzed. The rheology property of the coal mass under different temperature and gas pressure are also studied. the results of this paper can be used as a reference for gas drainage engineering in coal mine.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qi Zhang ◽  
Chun-li Yang ◽  
Xiang-chun Li ◽  
Zhong-bei Li ◽  
Yi Li

Coal and gas outburst is a kind of complex dynamic disaster with short duration and strong explosiveness, and the modes and strength of the outburst are determined by the in situ stress, gas pressure, and physical and mechanical properties of the coal mass. In this paper, the status quo of research on the mechanism of coal and gas outburst in China is described from three aspects: the controlling effect of single factor, the controlling effect of multi-factor, and new understandings of the outburst mechanism in recent years. Firstly, controlling factors of coal and gas outburst are classified for an in-depth analysis of the main factors of the same type of disasters, and the research progress and new understandings of the mechanism of coal and gas outburst are systematically sorted out. Secondly, the influencing factors of the strength coal mass are analyzed, and the related issues of coal mass strength on coal and gas outburst disaster mechanism are discussed. The results show that the stages of incubation, occurrence, development, and stop on coal and gas outburst are affected by the coupling effects of in situ stress field, gas pressure field, and seepage field, and the coal strength becomes an important factor affecting outburst strength under the same in situ stress and gas pressure. Therefore, the scientific and reasonable improvement methods of such similar simulation experiment devices are proposed according to the existing experimental methods and devices, which is of great significance to provide ideas for the continuous transferring to deep mining and preventing coal and gas outburst in China in the future.


2014 ◽  
Vol 543-547 ◽  
pp. 3967-3973
Author(s):  
Bao Shan Han

There are abundant CBM (Coalbed Methane) in China. These CBM has caused a remarkable problem to the coal-mining in China. In order to improve the structure of Chinese energy and eliminate the risk of coal mine gas, the relevant industries and sections have implemented many explorations in CBM enriched areas. With great achievements, there are many important problems in the actions of CBM exploitation. The disadvantageous interaction of the surface CBM well and the later coal mining has been ignored at all. There are many disadvantages and defects. To solve these problems and eliminate or weaken the disadvantageous, the scientific and reasonable design of surface CBM well location is an important step. With the thinking of surface condition, coal mining plan, the arrangement of coal mine laneway, the direction and scale of the in-situ stress, and thinking more about the negative influence to and of surface CBM well, according to the theories of mining dynamics, mining engineering, mining geomechanics, and the CBM engineering, the design theory of the surface CBM well net can be studied. Finally, the arrangement principle of CBM product well in coal field is presented. The existing or future coal pillar will be a critical location for the surface CBM well location.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jianwei Zheng ◽  
Wenjun Ju ◽  
Xiaodong Sun ◽  
Zhongwei Li ◽  
Shuai Wang ◽  
...  

Maintaining surrounding rock mass stability of roadways is essential to the safety of deep coal mining. In this study, the No. 2-2092 roadway of the No. 2-209 mining face in Ganhe coal was taken as the target roadway for field analysis. The selected region can be considered a typical area with dominating geological tectonic stress, based on the geological survey and in situ stress results. A mechanical model of roadway overburdens was developed to analyse the large deformation and stress field distribution. It is found that the large deformation is caused by the combined superposed stress field including laterally transferred stress formed in structures at overlying strata, mining-induced advanced abutment pressure, and the regional in situ stress. Thus, a Two-Direction Hydrofracturing Technique (TDHT) was proposed to reduce the pressure of the No. 2-2092 roadway by altering the roof structure in the influenced zones. Compared with the original roadway without fracturing, it is found that the roof to floor convergence has dropped by nearly 47% after fracturing; the displacement of sidewalls has reduced by almost 31%, demonstrating the effectiveness of the proposed method in pressure relief. Results from this study can provide guidance on controlling the large deformation of roadways in deep underground mines.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254996
Author(s):  
Jinzhang Jia ◽  
Dongming Wang ◽  
Bin Li ◽  
Xiuyuan Tian

To study the influence of different factors on the cracking effect of the liquid CO2 phase transition, the mechanics of coal rock crack extension based on liquid CO2 phase change blast loading were studied. Through the application of simulation software to analyze the influence of coal seam physical parameters (in situ stress, gas pressure, modulus of elasticity and strength of coal) and blasting parameters (fracturing pore size and peak pressure of detonation)on the effect of liquid CO2 phase change cracking, the simulation results showed that the cracking effect of liquid CO2 phase change was positively correlated with the changes in gas pressure, elastic modulus, fracture hole diameter and peak vent pressure, negatively correlated with the variation in situ stress and compressive strength, and nearly independent of the tensile strength. In addition, by using Gray correlation analysis to analyze the influence degree of six main factors on the cracking effect, the calculation results showed that the effect of blasting parameters was greater than that of physical parameters. The main controlling factor that affected the blasting effect was the peak pressure of blasting release. By conducting comparative engineering trials with different blasting parameters, the test results showed that the crack effect of the coal seam was positively correlated with the change in fracture hole diameter and peak venting pressure, which was consistent with the results obtained from the simulation. The experimental results and simulation results for the effective radius of coal seam fracturing were basically consistent, with the error between the two types of results falling below 10%. Therefore, the reliability of the blasting numerical model was verified. In summary, the research results provide theoretical guidance for applying and promoting liquid CO2 fracturing technology in coal mines.


2021 ◽  
Author(s):  
Bang-an Zhang ◽  
Yang yushun ◽  
Dong-ming Zhang

Abstract This paper adopts the stress relief method to test the in-situ stress in the field to obtain the in-situ stress distribution characteristics of No. 2+3# coal seam. A three-dimensional model was established with the No. S3012 working face as the engineering background, and the measured in-situ stress values ​​were applied to the three-dimensional model, and the spatial-temporal evolution characteristics of coal and rock mass around the stope during coal seam mining were studied. The specific conclusions are as follows: the three-dimensional stress distribution map in front of, behind and on both sides of the working face in the process of coal mining are obtained. As the working face goes on, the maximum value of the supporting stress formed in front of, behind and on both sides of the working face shifts to the corner, presenting a “hump-like” distribution. The stress concentration coefficient of front, back and both sides of stope increases linearly with the increase of mining size. Under the same mining size, the stress concentration coefficient in front of stope is the smallest, and the stress concentration coefficient on both sides is the largest. The three-dimensional displacement field distribution nephogram of overlying strata in the process of coal mining is obtained. With the continuous advance of the working face, the roof strata of coal seam undergo continuous dynamic subsidence process, and the roof subsidence increases continuously, showing the shape of "bowl" with sharp bottom. In the process of working face mining, the roof displacement of coal seam showed an "O" shape evolution characteristic. The three-dimensional distribution cloud map of the plastic zone of coal and rock mass in the process of working face mining was obtained, and the failure volume of the plastic zone gradually increases with the continuous progress of the working face.


2021 ◽  
Vol 377 ◽  
pp. 55-69
Author(s):  
Bin Zhou ◽  
Jiang Xu ◽  
Fazhi Yan ◽  
Shoujian Peng ◽  
Yabin Gao ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2661 ◽  
Author(s):  
Hanpeng Wang ◽  
Bing Zhang ◽  
Liang Yuan ◽  
Guofeng Yu ◽  
Wei Wang

The impact mechanism of in situ stress on outbursts plays a key role in the prevention of outbursts during deep coal mining. The in situ stress may influence the outburst by affecting the gas release intensity according to theoretical analysis, but none of the existing studies have taken into consideration this perspective. To explore whether the influence of in situ stress on gas release in coal is an important reason for stress-induced outbursts, experiments on gas release in coal under different axial stresses and on exposure-induced outbursts with different gases were conducted to respectively study the influence of in situ stress on gas release and the impact of gas release on outburst. The results show that with the increase of stress, the methane release intensity rises by 1~2.4 times and shows an obvious periodicity due to different degrees of fracture development. A small increase in gas release intensity can lead to huge increase in the outburst intensity based on an energy analysis of the outburst experiments, indicating that the gas release intensity is a sensitive physical quantity that influences outbursts. The differences in gas release in coal with different stresses will result in differences in the outburst results based on data from the two experiments, proving that the change in gas release intensity during variations of in situ stress is an important factor for in situ stress-induced outbursts. The research achievements can enrich the impact mechanism of in situ stress on outbursts.


Sign in / Sign up

Export Citation Format

Share Document