scholarly journals Gas Release Characteristics in Coal under Different Stresses and Their Impact on Outbursts

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2661 ◽  
Author(s):  
Hanpeng Wang ◽  
Bing Zhang ◽  
Liang Yuan ◽  
Guofeng Yu ◽  
Wei Wang

The impact mechanism of in situ stress on outbursts plays a key role in the prevention of outbursts during deep coal mining. The in situ stress may influence the outburst by affecting the gas release intensity according to theoretical analysis, but none of the existing studies have taken into consideration this perspective. To explore whether the influence of in situ stress on gas release in coal is an important reason for stress-induced outbursts, experiments on gas release in coal under different axial stresses and on exposure-induced outbursts with different gases were conducted to respectively study the influence of in situ stress on gas release and the impact of gas release on outburst. The results show that with the increase of stress, the methane release intensity rises by 1~2.4 times and shows an obvious periodicity due to different degrees of fracture development. A small increase in gas release intensity can lead to huge increase in the outburst intensity based on an energy analysis of the outburst experiments, indicating that the gas release intensity is a sensitive physical quantity that influences outbursts. The differences in gas release in coal with different stresses will result in differences in the outburst results based on data from the two experiments, proving that the change in gas release intensity during variations of in situ stress is an important factor for in situ stress-induced outbursts. The research achievements can enrich the impact mechanism of in situ stress on outbursts.

2014 ◽  
Vol 543-547 ◽  
pp. 3967-3973
Author(s):  
Bao Shan Han

There are abundant CBM (Coalbed Methane) in China. These CBM has caused a remarkable problem to the coal-mining in China. In order to improve the structure of Chinese energy and eliminate the risk of coal mine gas, the relevant industries and sections have implemented many explorations in CBM enriched areas. With great achievements, there are many important problems in the actions of CBM exploitation. The disadvantageous interaction of the surface CBM well and the later coal mining has been ignored at all. There are many disadvantages and defects. To solve these problems and eliminate or weaken the disadvantageous, the scientific and reasonable design of surface CBM well location is an important step. With the thinking of surface condition, coal mining plan, the arrangement of coal mine laneway, the direction and scale of the in-situ stress, and thinking more about the negative influence to and of surface CBM well, according to the theories of mining dynamics, mining engineering, mining geomechanics, and the CBM engineering, the design theory of the surface CBM well net can be studied. Finally, the arrangement principle of CBM product well in coal field is presented. The existing or future coal pillar will be a critical location for the surface CBM well location.


2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Fengxiang Nie ◽  
Honglei Wang ◽  
Liming Qiu

In China, coal-gas outburst is seriously affecting safety of the coal mine. To improve the safety status of underground coal mining, this work investigated the evolution process and occurrence mechanism of coal-gas outburst under the coupling action of stress and gas. Results show that increasing either gas pressure or in-situ stress can make coal destroy and destabilize, and the contribution of gas pressure to coal failure is twice that of in-situ stress. In ultradeep coal mining, coal-gas outburst may occur even under the condition of low gas pressure due to large in-situ stress. Moreover, the larger the mining depth is, the lower the gas index is required for disaster occurrence. The results have certain guiding significance for coal energy mining and the control of coal-gas outburst in deep coal mining.


2010 ◽  
Vol 29-32 ◽  
pp. 1369-1373
Author(s):  
Wan Chun Zhao ◽  
Ting Ting Wang ◽  
Guo Shuai Ju

The mechanical distribution of refracturing rock around well is Considered, the induced stress of vertical fractured well changes in pore pressure is first to establish, taking into account the fluid compressibility, the introduction of the initial artificial fracture fluid factor, an evolution model of in-situ stress is built up for initial fracture. Consider the impact of temperature on the reservoir rock, an evolution model of the temperature induced stress model is built up, Combined with in-situ stress field, an evolution model of Mechanical determination conditions of re-fracture well create new fracture is built up. Calculation of a block of Jilin Oilfield injection wells by the three effects of stress around an oil well, the theoretical calculation results are consistent with the field.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jianwei Zheng ◽  
Wenjun Ju ◽  
Xiaodong Sun ◽  
Zhongwei Li ◽  
Shuai Wang ◽  
...  

Maintaining surrounding rock mass stability of roadways is essential to the safety of deep coal mining. In this study, the No. 2-2092 roadway of the No. 2-209 mining face in Ganhe coal was taken as the target roadway for field analysis. The selected region can be considered a typical area with dominating geological tectonic stress, based on the geological survey and in situ stress results. A mechanical model of roadway overburdens was developed to analyse the large deformation and stress field distribution. It is found that the large deformation is caused by the combined superposed stress field including laterally transferred stress formed in structures at overlying strata, mining-induced advanced abutment pressure, and the regional in situ stress. Thus, a Two-Direction Hydrofracturing Technique (TDHT) was proposed to reduce the pressure of the No. 2-2092 roadway by altering the roof structure in the influenced zones. Compared with the original roadway without fracturing, it is found that the roof to floor convergence has dropped by nearly 47% after fracturing; the displacement of sidewalls has reduced by almost 31%, demonstrating the effectiveness of the proposed method in pressure relief. Results from this study can provide guidance on controlling the large deformation of roadways in deep underground mines.


2021 ◽  
Vol 4 (2) ◽  
pp. p1
Author(s):  
Dyson Moses ◽  
Hideki Shimada ◽  
Takashi Sasaoka ◽  
Akihiro Hamanaka ◽  
Tumelo K. M Dintwe ◽  
...  

The investigation of the influence of in situ stress in Open Pit Mine (OPM) projects has not been accorded a deserved attention despite being a fundamental concern in the design of underground excavations. Hence, its long-term potential adverse impacts on pit slope performance are overly undermined. Nevertheless, in mines located in tectonically active settings with a potential high horizontal stress regime like the Songwe mine, the impact could be considerable. Thus, Using FLAC3D 5.0 software, based on Finite Difference Method (FDM) code, we assessed the role of stress regimes as a potential triggering factor for slope instability in Songwe mine. The results of the evaluated shearing contours and quantified strain rate and displacement values reveal that high horizontal stress can reduce the stability performance of the pit-wall in spite of the minimal change in Factor of Safety (FoS). Since mining projects have a long life span, it would be recommendable to consider “in situ stress-stability analyses” for OPM operations that would be planned to extend to greater depths and those located in tectonically active regions.


2014 ◽  
Vol 941-944 ◽  
pp. 2558-2564
Author(s):  
Yu Kai Lv ◽  
Cong Jiang ◽  
Yao Dong Jiang

Coal bumps happened many times in mining at No.5 seam of Tangshan coal mine. Strengthen the roadway’s support of working face can effectively reduce disaster losses. With the research background of the 3654 working face, the mine pressure monitoring for the existing support form of roadway has been carried on. Perform a numerical simulation for the original roadway support, base on the in-situ stress and physical and mechanical characteristics of surrounding rock in experimental; study the impact of the stability of roadway’s surrounding rock, while the space change of trellis and change of supporting intensity; optimizing the original support form, so as to maximum reducing the impact of the coal bumps.


2021 ◽  
Author(s):  
Bang-an Zhang ◽  
Yang yushun ◽  
Dong-ming Zhang

Abstract This paper adopts the stress relief method to test the in-situ stress in the field to obtain the in-situ stress distribution characteristics of No. 2+3# coal seam. A three-dimensional model was established with the No. S3012 working face as the engineering background, and the measured in-situ stress values ​​were applied to the three-dimensional model, and the spatial-temporal evolution characteristics of coal and rock mass around the stope during coal seam mining were studied. The specific conclusions are as follows: the three-dimensional stress distribution map in front of, behind and on both sides of the working face in the process of coal mining are obtained. As the working face goes on, the maximum value of the supporting stress formed in front of, behind and on both sides of the working face shifts to the corner, presenting a “hump-like” distribution. The stress concentration coefficient of front, back and both sides of stope increases linearly with the increase of mining size. Under the same mining size, the stress concentration coefficient in front of stope is the smallest, and the stress concentration coefficient on both sides is the largest. The three-dimensional displacement field distribution nephogram of overlying strata in the process of coal mining is obtained. With the continuous advance of the working face, the roof strata of coal seam undergo continuous dynamic subsidence process, and the roof subsidence increases continuously, showing the shape of "bowl" with sharp bottom. In the process of working face mining, the roof displacement of coal seam showed an "O" shape evolution characteristic. The three-dimensional distribution cloud map of the plastic zone of coal and rock mass in the process of working face mining was obtained, and the failure volume of the plastic zone gradually increases with the continuous progress of the working face.


Author(s):  
Martin Ziegler ◽  
Benoît Valley

AbstractThe in situ state of rock mass stresses is a key design parameter, e.g., for deep engineered geothermal systems. However, knowledge of the stress state at great depths is sparse mostly because of the lack of possible in situ tests in deep boreholes. Among different options, core-based in situ stress estimation may provide valuable stress information though core-based techniques have not yet become a standard. In this study we focus on the Diametrical Core Deformation Analysis (DCDA) technique using monzogranitic to monzonitic rock drill cores from 4.9 km depth of the Basel-1 borehole in Switzerland. With DCDA the maximum and minimum horizontal stress (SHmax and Shmin) directions, and the horizontal differential stress magnitudes (∆S) can be estimated from rock cores extracted from vertical boreholes. Our study has three goals: first, to assess photogrammetric core scanning to conduct DCDA; second, to compare DCDA results with borehole breakout and stress-induced core discing fracture (CDF) data sets; and third, to investigate the impact of rock elastic anisotropy on ∆S. Our study reveals that photogrammetric scanning can be used to extract reliable core diametrical data and CDF traces. Locally aligned core pieces showed similar SHmax orientations, conform to borehole breakout results. However, the variability of core diametrical differences was large for the Basel-1 core pieces, which leads to a large spread of ∆S. Finally, we demonstrate that core elastic anisotropy must be considered, requiring robust estimates of rock elastic moduli, to receive valuable stress information from DCDA analyses.


Sign in / Sign up

Export Citation Format

Share Document