scholarly journals Evaluation Method of Coal-Bed Methane Fracturing in the Qinshui Basin

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zhengrong Chen ◽  
Tengfei Sun

In order to evaluate the productivity effects of coal-bed methane well fracturing, the relationship between the five factors of horizontal in situ stress difference is analyzed: fracturing friction, net pressure, fracture morphology, fracturing curve shape, and fracturing effect, taking the coal-bed methane wells in the Qinshui Basin as the research target. The results show that the smaller the horizontal in situ stress difference, the larger the fracture stimulation volume; the smaller the fracturing friction and the net pressure, the higher the productivity of the coal-bed methane well; the greater the proportion of coal-bed methane wells with complex fractures in the form of fracturing fractures, the greater the productivity; the fractures formed by descending and mixed fracture curves are ideal, and the effect after fracturing is better. Based on support vector machine for the above five factors, a fracturing effect classification and evaluation model is established using the fractured wells in the target block as training samples, and the effect prediction of nearby coal-bed methane wells is performed. The results show that the prediction results are in excellent agreement, comparing the prediction classification results of support vector machine with the average daily gas production. This theoretical method realizes the classification of the complex effects of coal-bed methane fracturing and provides a theoretical basis for the design of coal-bed methane well production stimulation and effect prediction.

2013 ◽  
Vol 756-759 ◽  
pp. 4758-4762
Author(s):  
Xing Peng Jing

In Order to Achieve Accurate Quantitative Results of Parameters for Reservoir Pressure of Coal-Bed Methane, Neural Network Prediction Analytic Method is Adopted to Predict the Reservoir Pressure of Coal-Bed Methane. the Main Controlling Factors such as Conformation Stress, Buried Depth, in-Situ Stress and Permeability are Investigated. Mathematical Models of Neural Network of Reservoir Pressure of Coal-Bed Methane of Mathematical Analysis and System Architecture are Established; Taking the Qinshui Basin Coal Seam as Example to Forecast and use Reservoir Pressure of Coal-Bed Methane. Projections Show that: the use of Neural Network Prediction of Reservoir Pressure of Coal-Bed Methane is Feasible; Neural Network Method Makes up a Mathematical Point of Linear and Regularity in Order to Solve the Non-Linear Complex Relationship between the Input and Output Parameter Variables.


2018 ◽  
Vol 6 (2) ◽  
pp. T271-T281 ◽  
Author(s):  
Shuai Yin ◽  
Airong Li ◽  
Qiang Jia ◽  
Wenlong Ding ◽  
Yanxia Li

In situ stress has an important influence on coal reservoir permeability, fracturing, and production capacity. In this paper, fracturing testing, imaging logging, and 3D finite-element simulation were used to study the current in situ stress field of a coal reservoir with a high coal rank. The results indicated that the horizontal stress field within the coal reservoir is controlled by the burial depth, folding, and faulting. The [Formula: see text] and [Formula: see text] values within the coal reservoir are 1–2.5 MPa higher than those within the clastic rocks of the roof and floor. The [Formula: see text]–[Formula: see text] values of the coal reservoir are generally between 2 and 6 MPa and increase with burial depth. When the [Formula: see text]–[Formula: see text] value is less than 5 MPa, production from a single well is high, but when the [Formula: see text]–[Formula: see text] value is greater than 5 MPa, production from a single well is low. In addition, the accumulated water production is high when the [Formula: see text]–[Formula: see text] value is greater than 5 MPa, demonstrating that a higher [Formula: see text]–[Formula: see text] value allows the hydraulic fractures to more easily penetrate the roof and floor of the coal seam. In coal-bed methane development regions with high [Formula: see text]–[Formula: see text] values, repeated fracturing using the small-scale plug removal method — which is a fracturing method that uses a small volume of liquid, small displacement, and low sand concentration — is suggested.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Yuepeng Wang ◽  
Xiangjun Liu ◽  
Lixi Liang ◽  
Jian Xiong

The complexity of hydraulic fractures (HF) significantly affects the success of reservoir reconstruction. The existence of a bedding plane (BP) in shale impacts the extension of a fracture. For shale reservoirs, in order to investigate the interaction mechanisms of HF and BPs under the action of coupled stress-flow, we simulate the processes of hydraulic fracturing under different conditions, such as the stress difference, permeability coefficients, BP angles, BP spacing, and BP mechanical properties using the rock failure process analysis code (RFPA2D-Flow). Simulation results showed that HF spread outward around the borehole, while the permeability coefficient is uniformly distributed at the model without a BP or stress difference. The HF of the formation without a BP presented a pinnate distribution pattern, and the main direction of the extension is affected by both the ground stress and the permeability coefficient. When there is no stress difference in the model, the fracture extends along the direction of the larger permeability coefficient. In this study, the in situ stress has a greater influence on the extension direction of the main fracture when using the model with stress differences of 6 MPa. As the BP angle increases, the propagation of fractures gradually deviates from the BP direction. The initiation pressure and total breakdown pressure of the models at low permeability coefficients are higher than those under high permeability coefficients. In addition, the initiation pressure and total breakdown pressure of the models are also different. The larger the BP spacing, the higher the compressive strength of the BP, and a larger reduction ratio (the ratio of the strength parameters of the BP to the strength parameters of the matrix) leads to a smaller impact of the BP on fracture initiation and propagation. The elastic modulus has no effect on the failure mode of the model. When HF make contact with the BP, they tend to extend along the BP. Under the same in situ stress condition, the presence of a BP makes the morphology of HF more complex during the process of propagation, which makes it easier to achieve the purpose of stimulated reservoir volume (SRV) fracturing and increased production.


Sign in / Sign up

Export Citation Format

Share Document