scholarly journals Elliptic Flow of Hadrons via Quark Coalescence Mechanism Using the Boltzmann Transport Equation for Pb+Pb Collision at sNN=2.76 TeV

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Mohammed Younus ◽  
Sushanta Tripathy ◽  
Swatantra Kumar Tiwari ◽  
Raghunath Sahoo

Elliptic flow of hadrons observed at relativistic heavy ion collision experiments at relativistic heavy ion collider (RHIC) and large hadron collider (LHC) provides us an important signature of possible deconfinement transition from the hadronic phase to partonic phase. However, hadronization processes of deconfined partons back into final hadrons are found to play a vital role in the observed hadronic flow. In the present work, we use a coalescence mechanism also known as recombination (ReCo) to combine quarks into hadrons. To get there, we have used the Boltzmann transport equation in relaxation time approximation to transport the quarks into equilibration and finally to freeze-out the surface, before coalescence takes place. A Boltzmann-Gibbs blast wave (BGBW) function is taken as an equilibrium function to get the final distribution and a power-like function to describe the initial distributions of partons produced in heavy ion collisions. In the present work, we try to estimate the elliptic flow of identified hadrons such as π, K, and p, produced in Pb+Pb collisions at sNN=2.76 TeV at the LHC for different centralities. The elliptic flow (v2) of identified hadrons seems to be described quite well in the available pT range. After the evolution of quarks until freeze-out time has been calculated using BTE-RTA, the approach used in this paper consists of combining two or more quarks to explain the produced hadrons at intermediate momenta regions. The formalism is found to describe the elliptic flow of hadrons produced in Pb+Pb collisions to a large extent.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Shusu Shi

Strange hadrons, especially multistrange hadrons, are good probes for the early partonic stage of heavy ion collisions due to their small hadronic cross sections. In this paper, I give a brief review on the elliptic flow measurements of strange and multistrange hadrons in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC).


2007 ◽  
Vol 16 (07n08) ◽  
pp. 1917-1922
Author(s):  
D. KROFCHECK ◽  
R. MAK ◽  
P. ALLFREY

At the Relativistic Heavy Ion Collider (RHIC) elliptic flow signals (v2) appear to be stronger than those measured at lower center-of-mass energies. With the beginning of heavy ion beams at the Large Hadron Collider (LHC) it is important to have a reliable tool for simulating v2 at the LHC Pb – Pb center-of-mass energy of 5.5 A TeV. In this work we used the heavy ion simulation tool HYDJET to study elliptic flow at the event generator level. The generator level elliptic flow v2 for Pb – Pb collisions was two-particle and four-particle cumulants.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Deeptak Biswas

We have estimated centrality variation of chemical freeze-out parameters from yield data at midrapidity of π ± , K ± and p , p ¯ for collision energies of RHIC (Relativistic Heavy Ion Collider), Beam Energy Scan (RHIC-BES) program, and LHC (Large Hadron Collider). We have considered a simple hadron resonance gas model and employed a formalism involving conserved charges ( B , Q , S ) of QCD for parameterization. Along with temperature and three chemical potentials ( T , μ B , μ Q , μ S ), a strangeness undersaturation factor ( γ S ) has been used to incorporate the partial equilibration in the strange sector. Our obtained freeze-out temperature does not vary much with centrality, whereas chemical potentials and γ S seem to have a significant dependence. The strange hadrons are found to deviate from a complete chemical equilibrium at freeze-out at the peripheral collisions. This deviation appears to be more prominent as the collision energy decreases at lower RHIC-BES energies. We have also shown that this departure from equilibrium reduces towards central collisions, and strange particle equilibration may happen after a threshold number of participants in A - A collision.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Muhammad Waqas ◽  
Fu-Hu Liu ◽  
Zafar Wazir

Centrality-dependent double-differential transverse momentum spectra of negatively charged particles (π−, K−, and p¯) at the mid(pseudo)rapidity interval in nuclear collisions are analyzed by the standard distribution in terms of multicomponent. The experimental data measured in gold-gold (Au-Au) collisions by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC) and in lead-lead (Pb-Pb) collisions by the ALICE Collaboration at the Large Hadron Collider (LHC) are studied. The effective temperature, initial temperature, kinetic freeze-out temperature, transverse flow velocity, and kinetic freeze-out volume are extracted from the fitting to transverse momentum spectra. We observed that the mentioned five quantities increase with the increase of event centrality due to the fact that the average transverse momentum increases with the increase of event centrality. This renders that larger momentum (energy) transfer and further multiple scattering had happened in central centrality.


2005 ◽  
Vol 25 (1) ◽  
pp. 65-73 ◽  
Author(s):  
L. P. Csernai ◽  
V. K. Magas ◽  
E. Molnár ◽  
A. Nyiri ◽  
K. Tamosiunas

2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Li-Li Li ◽  
Fu-Hu Liu ◽  
Muhammad Waqas ◽  
Rasha Al-Yusufi ◽  
Altaf Mujear

Transverse momentum (mass) spectra of positively and negatively charged pions and of positively and negatively charged kaons, protons, and antiprotons produced at mid-(pseudo)rapidity in various collisions at high energies are analyzed in this work. The experimental data measured in central gold-gold, central lead-lead, and inelastic proton-proton collisions by several international collaborations are studied. The (two-component) standard distribution is used to fit the data and extract the excitation function of effective temperature. Then, the excitation functions of kinetic freeze-out temperature, transverse flow velocity, and initial temperature are obtained. In the considered collisions, the four parameters increase with the increase of collision energy in general, and the kinetic freeze-out temperature appears at the trend of saturation at the top Relativistic Heavy Ion Collider and the Large Hadron Collider.


2005 ◽  
Vol 31 (6) ◽  
pp. S1001-S1004 ◽  
Author(s):  
K Tamosiunas ◽  
L P Csernai ◽  
V K Magas ◽  
E Molnár ◽  
Á Nyíri

Sign in / Sign up

Export Citation Format

Share Document