scholarly journals Improved Boundary Conditions for a 3D DEM Simple Shear Model

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yao Li ◽  
Peifeng Su ◽  
Zhe Wang

In this study, a 3D simple shear model using DEM is built based on the boundary condition of an NGI-type bidirectional simple shear apparatus. Stack of rings used as lateral constraints in a bidirectional simple shear test is modelled by layers of clumps which is possible to be moved by particles; different contact types and parameters are used to model the sand-loading caps, sand-latex membrane, and sand-sand contacts. A simple shear test using the bidirectional simple shear apparatus is performed for the calibration of the 3D DEM simple shear model. By analyzing the simulation results, the following can be concluded. (1) Rings generated by clumps can provide an accurate boundary condition, effective in computation since no contact force is needed for a clump. (2) In the simulation, the orientation of average contact force changed dramatically during shear. It is in the vertical direction (90°) before shear and changes to 45° at 40% shear strain. No shear band is observed which is consistent with the test, and particles move uniformly. (3) In the simulation, the degree of noncoaxiality is the greatest at the beginning of shear, and it is decreased during shear. However, the degree of noncoaxiality is still large at 20% shear strain where there is a 10° difference between the rotation angle of principal stress and principal strain increment.

1972 ◽  
Vol 98 (1) ◽  
pp. 155-160
Author(s):  
A. Stanley Lucks ◽  
John T. Christian ◽  
Gregg E. Brandow ◽  
Kaare Höeg

2018 ◽  
Vol 5 (5) ◽  
pp. 172076 ◽  
Author(s):  
Yao Li ◽  
Yunming Yang

This study aims to investigate the effect of consolidation shear stress magnitude on the shear behaviour and non-coaxiality of soils. In previous drained bi-directional simple shear test on Leighton Buzzard sand, it is showed that the level of non-coaxiality, which is indicated by the angle difference between the principal axes of stresses and the corresponding principal axes of strain rate tensors, is increased by increasing angle difference between the direction of consolidation shear stress and secondary shearing. This paper further investigated the relation and includes results with higher consolidation shear stresses. Results agree with the previous relation, and further showed that increasing consolidation shear stresses decreased the level of non-coaxiality in tests with angle difference between 0° and 90°, and increased the level of non-coaxiality in tests with angle difference between 90° and 180°.


2016 ◽  
Vol 717 ◽  
pp. 32-37
Author(s):  
Ruo Yun Wang ◽  
Jian Yun He ◽  
Ying An ◽  
Yong Kang Hu ◽  
Xin Hua Fu ◽  
...  

Tire simulation gradually becomes an important mean to ensure the quality of the tires. In order to guarantee the reliability of the analysis, the study on the method of obtaining the material parameters is also increasing. According to tire force situation of actual work, the acquisition method of tire rubber parameters based on simple shear test and its application in finite element analysis were studied in this paper. In this research, the international advanced dynamic mechanical analyzer was used to test the tire rubber, and the experimental results were processed by Yeoh hyper-elastic model. The hyper-elastic parameters and thus obtained could be used for finite element analysis of tires, and the simulation results showed that these parameters could be used to simulate the tire performance. In addition, the results could also provide certain guidance for the design and manufacture of tire.


Sign in / Sign up

Export Citation Format

Share Document