scholarly journals Aerodynamic Design Optimization of Transonic Natural-Laminar-Flow Airfoil at Low Reynolds Number

2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Jing Li ◽  
Cong Wang ◽  
Huiting Bian

The position and size of laminar separation bubble on airfoil surfaces exert a profound impact on the efficiency of transonic natural-laminar-flow airfoil at low Reynolds number. Based on the particle swarm algorithm, an optimization methodology in the current work would be established with the aim of designing a high and robust performance transonic natural-laminar-flow airfoil at low Reynolds number. This methodology primarily includes two design processes: a traditional deterministic optimization at on-design point and a multi-objective of uncertainty-based optimization. First, a multigroup cooperative particle swarm optimization was used to obtain the optimal deterministic solution. The crowing distance multi-objective particle swarm optimization and the non-intrusive polynomial chaos expansion method were then adopted to determinate the Pareto-optimal front of uncertainty-based optimization. Additionally, the γ−Re¯θt transition model was employed to predict the laminar-turbulent transition. Regarding to the established optimization methodology, a propeller tip airfoil of solar energy unmanned aerial vehicle was finally designed. During optimization processes, the minimized pressure drag was particularly chosen as the optimization objective, while the friction drag increment served as a constraint condition. The deterministic results indicate that the optimized airfoil has a good ability to control the separation and reattachment positions, and the pressure drag can be greatly reduced when the laminar separation bubble is weakened. The multi-objective results show that the uncertainty-based optimized airfoil possesses a significant robust performance by considering the uncertainty of Mach number. The findings evidently demonstrate that the proposed optimization methodology and mathematical model are valuable tools to design a high-efficiency airfoil for the propeller tip.

Author(s):  
Yuan Hu ◽  
Quanhua Sun ◽  
Jing Fan

Gas flow over a micro cylinder is simulated using both a compressible Navier-Stokes solver and a hybrid continuum/particle approach. The micro cylinder flow has low Reynolds number because of the small length scale and the low speed, which also indicates that the rarefied gas effect exists in the flow. A cylinder having a diameter of 20 microns is simulated under several flow conditions where the Reynolds number ranges from 2 to 50 and the Mach number varies from 0.1 to 0.8. It is found that the low Reynolds number flow can be compressible even when the Mach number is less than 0.3, and the drag coefficient of the cylinder increases when the Reynolds number decreases. The compressible effect will increase the pressure drag coefficient although the friction coefficient remains nearly unchanged. The rarefied gas effect will reduce both the friction and pressure drag coefficients, and the vortex in the flow may be shrunk or even disappear.


Author(s):  
Michael J. Collison ◽  
Peter X. L. Harley ◽  
Domenico di Cugno

Low speed, small scale turbomachinery operates at low Reynolds number with transition phenomena occurring. In small consumer product applications, high efficiency and low noise are key performance metrics. Transition behaviour will partly determine the state of the boundary layer at the trailing edge; whether it is laminar, turbulent or separated impacts aerodynamic and acoustic performance. This study aimed to evaluate a commercially available CFD transition model on a low Reynolds number Eppler E387 airfoil and identify whether it was able to correctly model the boundary layer transition, and at what expense. CFD was carried out utilising the ANSYS Shear Stress Transport (SST) k-ω γ-Reθ transition model. The CFD progressed from 2D in Fluent v150, through to single cell thickness 3D (pseudo 2D) in CFX v172. An Eppler E387 low Reynolds number airfoil, for which experimental data was readily available from literature at Re = 200,000 was used as the validation case for the CFD, with results computed at numerous incidence angles and mesh densities. Additionally, experimental surface oil flow visualisation was undertaken in a wind tunnel using a scaled E387 airfoil for the zero incidence case at Re = 50,000. The flow visualisation exhibited the expected key features of transition in the breakdown of the boundary layer from laminar to turbulent, and was used as a validation case for the CFD transition model. The comparison between the results from the CFD transition model and the experimental data from literature suggested varying levels of agreement based on the mesh density and CFD solver in the starting location of the laminar separation bubble, with higher disparity for the position of the reattachment point. Whether 2D or 3D, the prediction accuracy was seen to worsen at high incidence angles. Finally, the location of the laminar separation bubble between CFD and oil flow visualisation had good agreement and a set of guidelines on the mesh parameters which can be applied to low Reynolds number turbomachinery simulations was determined.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Paul Ziadé ◽  
Mark A. Feero ◽  
Philippe Lavoie ◽  
Pierre E. Sullivan

The shear layer development for a NACA 0025 airfoil at a low Reynolds number was investigated experimentally and numerically using large eddy simulation (LES). Two angles of attack (AOAs) were considered: 5 deg and 12 deg. Experiments and numerics confirm that two flow regimes are present. The first regime, present for an angle-of-attack of 5 deg, exhibits boundary layer reattachment with formation of a laminar separation bubble. The second regime consists of boundary layer separation without reattachment. Linear stability analysis (LSA) of mean velocity profiles is shown to provide adequate agreement between measured and computed growth rates. The stability equations exhibit significant sensitivity to variations in the base flow. This highlights that caution must be applied when experimental or computational uncertainties are present, particularly when performing comparisons. LSA suggests that the first regime is characterized by high frequency instabilities with low spatial growth, whereas the second regime experiences low frequency instabilities with more rapid growth. Spectral analysis confirms the dominance of a central frequency in the laminar separation region of the shear layer, and the importance of nonlinear interactions with harmonics in the transition process.


Author(s):  
M.P. Uthra ◽  
A. Daniel Antony

Most admirable and least known features of low Reynolds number flyers are their aerodynamics. Due to the advancements in low Reynolds number applications such as Micro Air vehicles (MAV), Unmanned Air Vehicles (UAV) and wind turbines, researchers’ concentrates on Low Reynolds number aerodynamics and its effect on aerodynamic performance. The Laminar Separation Bubble (LSB) plays a deteriorating role in affecting the aerodynamic performance of the wings. The parametric study has been performed to analyse the flow around cambered, uncambered wings with different chord and Reynolds number in order to understand the better flow characteristics, LSB and three dimensional flow structures. The computational results are compared with experimental results to show the exact location of LSB. The presence of LSB in all cases is evident and it also affects the aerodynamic characteristics of the wing. There is a strong formation of vortex in the suction side of the wing which impacts the LSB and transition. The vortex structures impact on the LSB is more and it also increases the strength of the LSB throughout the span wise direction.


2014 ◽  
Vol 493 ◽  
pp. 9-14
Author(s):  
Dedy Zulhidayat Noor ◽  
Eddy Widiyono ◽  
Suhariyanto ◽  
Lisa Rusdiyana ◽  
Joko Sarsetiyanto

Laminar flow past a circular cylinder has been studied numerically at low Reynolds number. The upstream and downstream rods have been used as passive control in order to reduce hydrodynamics forces acting on the cylinder. Both the upstream and downstream rods significantly contribute in reduction of drag and fluctuating lift compared to single cylinder without the rods. More detail, the upstream installation rod is more dominant in drag reduction than the downstream one. On the contrary, the downstream rod has suppressed the magnitude of the fluctuating lift almost twice that of the upstream configuration. Placing the two rods together as the upstream and downstream passive control in tandem arrangement has given more hydrodynamics forces reduction than the single rod configurations.Keywords:circular cylinder, passive control, tandem, drag, lift.


Author(s):  
Roberto Pacciani ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Francesco Bertini

A study of the separated flow in high-lift, low-Reynolds-number cascade, has been carried out using a novel three-equation, transition-sensitive, turbulence model. It is based on the coupling of an additional transport equation for the so-called laminar kinetic energy with the Wilcox k-ω model. Such an approach takes into account the increase of the non-turbulent fluctuations in the pre-transitional and transitional region. Two high-lift cascades (T106C and T108), recently tested at the von Ka´rma´n Institute in the framework of the European project TATMo (Turbulence and Transition Modelling for Special Turbomachinery Applications), were analyzed. The two cascades have different loading distributions and suction side diffusion rates, and therefore also different separation bubble characteristics and loss levels. The analyzed Reynolds number values span the whole range typically encountered in aeroengines low-pressure turbines operations. Several expansion ratios for steady inflow conditions characterized by different freestream turbulence intensities were considered. A detailed comparison between measurements and computations, including bubble structural characteristics, will be presented and discussed. Results with the proposed model show its ability to predict the evolution of the separated flow region, including bubble bursting phenomena, in high-lift cascades operating in LP-turbine conditions.


2014 ◽  
Vol 660 ◽  
pp. 487-491 ◽  
Author(s):  
Lavi R. Zuhal ◽  
Yohanes Bimo Dwianto ◽  
Pramudita Satria Palar

This paper presents the development of multi-objective population-based optimization method, called Non-dominated Sorting Genetic Algorithm II (NSGA-II), to optimize the aerodynamic characteristic of a low Reynolds number airfoil. The optimization is performed by changing the shape of the airfoil to obtain geometry with the best aerodynamic characteristics. The results of the study show that the developed optimization tool, coupled with modified PARSEC parameterization, has yielded optimum airfoils with better aerodynamic characteristics compared to original airfoil. Additionally, it is found that the developed method has better performance compared to similar methods found in literature.


Sign in / Sign up

Export Citation Format

Share Document