scholarly journals Analysis and Comparison of Queue with N-Policy and Unreliable Server

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qing Ma ◽  
Xuelu Zhang

This work considers a queueing system with N-policy and unreliable server, where potential customers arrive at the system according to Poisson process. If there is no customer waiting in the system, instead of shutting down, the server turns into dormant state and does not afford service until the number of customers is accumulated to a certain threshold. And in the working state, the server is apt to breakdown and affords service again only after it is repaired. According to whether the server state is observable or not, the numerical optimal arrival rates are computed to maximize the social welfare and throughput of the system. The results illustrate their tendency in two cases so that the manager has a strong ability to decide which is more crucial in making management decision.

2020 ◽  
Vol 54 (3) ◽  
pp. 615-636 ◽  
Author(s):  
Wei Sun ◽  
Shiyong Li ◽  
Naishuo Tian

This paper mainly studies customers’ equilibrium balking behavior in Markovian queues with single vacation and geometric abandonments. Whenever the system becomes empty, the server begins a vacation. If it is still empty when the vacation ends, the server stays idle and waits for new arrivals. During a vacation, abandonment opportunities occur according to a Poisson process, and at an abandonment epoch, customers decide sequentially whether they renege and leave the system or not. We consider four information levels: the fully/almost observable cases and the almost/fully unobservable cases, and get the customers’ equilibrium balking strategies, respectively. Then we also get their optimal balking strategies for the almost observable and the almost/fully unobservable cases, and make comparisons of customer strategies and social welfare for the almost observable and the almost/fully unobservable queues with single vacation and multiple vacations. Because of abandonment, we find that the customers’ equilibrium threshold in a vacation may exceed the one in a busy period in the fully observable queues. However, it has little effect on their equilibrium threshold in the almost observable queues, although frequent abandonment opportunity arrival inhibits their optimal threshold. Interestingly, for the almost unobservable queues, customers who arrive in a busy period are not affected by reneging that happened in the previous vacation when they make decisions of joining or balking, whereas the social planner expects that the customers can take it into consideration for social optimization. In the fully unobservable queues, because of no information, possible reneging surely influences customers’ equilibrium and optimal balking behavior. For the almost observable and the almost/fully unobservable queues, the optimal social welfare is greater in the queues with single vacation than that in the queues with multiple vacations.


2015 ◽  
Author(s):  
Ahmad Bello Dogarawa ◽  
Suleiman Muhammad Hussain
Keyword(s):  

1981 ◽  
Vol 18 (01) ◽  
pp. 190-203 ◽  
Author(s):  
Guy Latouche

A queueing system with exponential service and correlated arrivals is analysed. Each interarrival time is exponentially distributed. The parameter of the interarrival time distribution depends on the parameter for the preceding arrival, according to a Markov chain. The parameters of the interarrival time distributions are chosen to be equal to a common value plus a factor ofε, where ε is a small number. Successive arrivals are then weakly correlated. The stability condition is found and it is shown that the system has a stationary probability vector of matrix-geometric form. Furthermore, it is shown that the stationary probabilities for the number of customers in the system, are analytic functions ofε, for sufficiently smallε, and depend more on the variability in the interarrival time distribution, than on the correlations.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1280
Author(s):  
Zixuan Wang ◽  
Xiuzhang Li

In the competitive market environment, the growth of new energy vehicles (NEVs) faces many obstacles. Demand subsidy or production regulation-related policies are widely used to promote the development of NEVs. A comparative analysis of the effects of the two types of policies on the competitive vehicle market requires further study. To fill this gap, we investigate which type of policy is more preferable from the perspective of the social planner. In this paper, we construct a Stackelberg game with a welfare-maximizing social planner and two profit-maximizing manufacturers producing NEVs and fuel vehicles (FVs), respectively. Interestingly, although both types of policies can increase the quantity of NEVs, demand subsidy also promotes the growth of total vehicles at the same time; in contrast, production regulation reduces the total vehicles. Moreover, compared with the benchmark that no policy intervention, demand subsidy generally improves social welfare, while production regulation improves social welfare only with high consumer preference for NEVs. Nevertheless, production regulation always has a positive impact on the environment, whereas demand subsidy may have a positive impact only when the NEV is very environment friendly. The numerical results show that consumer environmental preferences and the regulation of environmental impact determine which type of policy dominates the other.


Sign in / Sign up

Export Citation Format

Share Document