scholarly journals Application of Xgboost Feature Extraction in Fault Diagnosis of Rolling Bearing

2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Xingang WANG ◽  
Chao WANG

Due to the difficulty that excessive feature dimension in fault diagnosis of rolling bearing will lead to the decrease of classification accuracy, a fault diagnosis method based on Xgboost algorithm feature extraction is proposed. When the Xgboost algorithm classifies features, it generates an order of importance of the input features. The time domain features were extracted from the vibration signal of the rolling bearing, the time-frequency features were formed by the singular value of the modal components that were decomposed by the variational mode decomposition. Firstly, the extracted time domain and time-frequency domain features were input into the support vector machine respectively to observe the fault diagnosis accuracy. Then, Xgboost algorithm was used to rank the importance of features and got the accuracy of fault diagnosis. Finally, important features were extracted and the extracted features were input into the support vector machine to observe the fault diagnosis accuracy. The result shows that the fault diagnosis accuracy of rolling bearing is improved after important feature extraction in time domain and time-frequency domain by Xgboost.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhang Xu ◽  
Darong Huang ◽  
Tang Min ◽  
Yunhui Ou

To solve the problem that the bearing fault of variable working conditions is challenging to identify and classify in the industrial field, this paper proposes a new method based on optimization of multidimension fault energy characteristics and integrates with an improved least-squares support vector machine (LSSVM). First, because the traditional wavelet energy feature is difficult to effectively reflect the characteristics of rolling bearing under different working conditions, based on analyzing the wavelet energy feature extraction in detail, a collaborative method of multidimension fault energy feature extraction combined with the method of Transfer Component Analysis (TCA) is constructed, which improves the discrimination between the different features and the compactness between the same features of rolling bearing faults. Then, for solving the problem of the local optimal of particle swarm optimization (PSO) in fault diagnosis and recognition of rolling bearing, an improved LSSVM based on particle swarm optimization and wavelet mutation optimization is established to realize the collaborative optimization and adjustment of LSSVM dynamic parameters. Based on the improved LSSVM and optimization of multidimensional energy characteristics, a new method for fault diagnosis of rolling bearing is designed. Finally, the simulation and analysis of the proposed algorithm are verified by the experimental data of different working conditions. The experimental results show that this method can effectively extract the multidimensional fault characteristics under variable working conditions and has a high fault recognition rate.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tongle Xu ◽  
Junqing Ji ◽  
Xiaojia Kong ◽  
Fanghao Zou ◽  
Wilson Wang

The classification frameworks for fault diagnosis of rolling element bearings in rotating machinery are mostly based on analysis in a single time-frequency domain, where sensitive features are not completely extracted. To solve this problem, a new fault diagnosis technique is proposed in the mixed domain, based on the crossover-mutation chaotic particle swarm optimization support vector machine. Firstly, fault features are generated using techniques in the time domain, the frequency domain, and the time-frequency domain. Secondly, the weighted maximum relevance minimum redundancy (WMRMR) algorithm is adopted to reduce the dimension of the feature set and to establish the representative feature set. Thirdly, a new crossover-mutation strategy is suggested to reduce the local minima in optimization, and an optimization disturbance is added. Finally, the support vector machine is optimized using the improved chaotic particle swarm to improve fault classification diagnosis. The effectiveness of the proposed new bearing fault diagnostic technique is verified by experimental tests under different bearing conditions. Test results showed that the bearing fault classification accuracy of CMCPSO-SVM in the mixed domain was much higher than those in a single feature domain.


Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 932 ◽  
Author(s):  
Bin Pang ◽  
Guiji Tang ◽  
Chong Zhou ◽  
Tian Tian

Rotor is a widely used and easily defected mechanical component. Thus, it is significant to develop effective techniques for rotor fault diagnosis. Fault signature extraction and state classification of the extracted signatures are two key steps for diagnosing rotor faults. To complete the accurate recognition of rotor states, a novel evaluation index named characteristic frequency band energy entropy (CFBEE) was proposed to extract the defective features of rotors, and support vector machine (SVM) was employed to automatically identify the rotor fault types. Specifically, the raw vibration signal of rotor was first analyzed by a joint time–frequency method based on improved singular spectrum decomposition (ISSD) and Hilbert transform (HT) to derive its time–frequency spectrum (TFS), which is named ISSD-HT TFS in this paper. Then, the CFBEE of the ISSD-HT TFS was calculated as the fault feature vector. Finally, SVM was used to complete the automatic identification of rotor faults. Simulated processing results indicate that ISSD improves the end effects of singular spectrum decomposition (SSD) and is superior to empirical mode decomposition (EMD) in extracting the sub-components of rotor vibration signal. The ISSD-HT TFS can more accurately reflect the time–frequency information compared to the EMD-HT TFS. Experimental verification demonstrates that the proposed method can accurately identify rotor defect types and outperform some other methods.


2020 ◽  
Vol 12 (10) ◽  
pp. 168781402096947
Author(s):  
Hui Han ◽  
Lina Hao

Rolling bearings are the most frequently failed components in rotating machinery. Once a failure occurs, the entire system will be shut down or even cause catastrophic consequences. Therefore, a fault detection of rolling bearings is of great significance. Due to the complexity of the mechanical system, the randomness of the vibration signal appears on different scales. Based on the multi-scale fuzzy entropy (FE) analysis of the vibration signal, a rolling bearing fault diagnosis method based on smoothness priors approach (SPA) -FE-IFSVM is proposed. The SPA method was used to adaptively decompose the vibration signal and obtain the trend item and de-trend item of the vibration signal. Then the fuzzy entropy of the trend item and de-trend item was calculated respectively. Meanwhile, aiming at the problem that the support vector machine (SVM) cannot process the data set containing fuzzy messages and was sensitive to noise, the fuzzy support vector machine (FSVM) was introduced and improved, and then the FE as the feature vector was input into the improved fuzzy support vector machine (IFSVM) to identify the failure. The method was applied to the rolling bearing experimental data. The analysis results show that: this method can achieve 100% fault diagnosis accuracy when only two component features are extracted, which can effectively realize the fault diagnosis of rolling bearings.


Author(s):  
Saeed Abbasion ◽  
Anoushiravan Farshidianfar ◽  
Nilgoon Irani ◽  
Mohamad Bashari

Due to importance of rolling bearings as one of the most widely used industrial machinery elements, development of proper monitoring and fault diagnosis procedure to prevent malfunctioning and failure of these elements during operation is necessary. For rolling bearing fault detection, it is expected that a desired time-frequency analysis method have good computational efficiency, and have good resolution in both, time and frequency domain. The point of interest in this investigation is the present of an effective method for multi fault diagnosis in such systems with optimizing signal decomposition levels by using wavelet analysis and support vector machine (SVM). The system that is under study is an electric motor which has two rolling bearings, one of them is next to the output shaft and the other one is next to the fan and for each of them there is one normal form and three false forms, which make 8 forms for study. The outcome that we have achieved from wavelet analysis and SVM are fully in agreement with empirical result.


Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 98
Author(s):  
Haodong Yuan ◽  
Nailong Wu ◽  
Xinyuan Chen ◽  
Yueying Wang

The vibration signal of rotating machinery fault is a periodic impact signal and the fault characteristics appear periodically. The shift invariant K-SVD algorithm can solve this problem effectively and is thus suitable for fault feature extraction of rotating machinery. With the over-complete dictionary learned by the training samples, including thedifferent classes, shift invariant sparse feature for the training as well as test samples can be formed through sparse codes and employed as the input of classifier. A support vector machine (SVM) with optimized parameters has been extensively used in intelligent diagnosis of machinery fault. Hence, in this study, a novel fault diagnosis method of rolling bearings using shift invariant sparse feature and optimized SVM is proposed. Firstly, dictionary learning by shift invariant K-SVD algorithm is conducted. Then, shift invariant sparse feature is constructed with the learned over-complete dictionary. Finally, optimized SVM is employed for classification of the shift invariant sparse feature corresponding to different classes, hence, bearing fault diagnosis is achieved. With regard to the optimized SVM, three methods including grid search, generic algorithm (GA), and particle swarm optimization (PSO) are respectively carried out. The experiment results show that the shift invariant sparse feature using shift invariant K-SVD can effectively distinguish the bearing vibration signals corresponding to different running states. Moreover, optimized SVM can significantly improve the diagnosis precision.


Author(s):  
Tao Zan ◽  
Zhihao Liu ◽  
Hui Wang ◽  
Min Wang ◽  
Xiangsheng Gao ◽  
...  

In order to improve the prediction accuracy of performance degradation trends of rolling bearings, a method based on the joint approximative diagonalization of eigen-matrices (JADE) and particle swarm optimization support vector machine (PSO-SVM) was proposed. Firstly, the features of the time-domain, frequency-domain, and time-frequency-domain eigenvalues of the vibration signal corresponding to the entire life cycle of the rolling bearing are extracted, and the performance degradation parameters are initially selected by using the monotonicity parameter. Then, a fusion feature that can effectively represent the performance degradation is obtained by using the JADE method. Finally, the prediction model based on PSO-SVM is constructed to predict the performance degradation trend. By comparing with the prediction results obtained by other classical methods, it can be proved that this method can accurately predict the performance degradation trend and the remaining useful life (RUL) of rolling bearings under small sample sizes, and has considerable application potentials.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 375
Author(s):  
Songrong Luo ◽  
Wenxian Yang ◽  
Youxin Luo

Condition monitoring and fault diagnosis of a rolling bearing is crucial to ensure the reliability and safety of a mechanical system. When local faults happen in a rolling bearing, the complexity of intrinsic oscillations of the vibration signals will change. Refined composite multiscale dispersion entropy (RCMDE) can quantify the complexity of time series quickly and effectively. To measure the complexity of intrinsic oscillations at different time scales, adaptive sparest narrow-band decomposition (ASNBD), as an improved adaptive sparest time frequency analysis (ASTFA), is introduced in this paper. Integrated, the ASNBD and RCMDE, a novel-fault diagnosis-model is proposed for a rolling bearing. Firstly, a vibration signal collected is decomposed into a number of intrinsic narrow-band components (INBCs) by the ASNBD to present the intrinsic modes of a vibration signal, and several relevant INBCs are prepared for feature extraction. Secondly, the RCMDE values are calculated as nonlinear measures to reveal the hidden fault-sensitive information. Thirdly, a basic Multi-Class Support Vector Machine (multiSVM) serves as a classifier to automatically identify the fault type and fault location. Finally, experimental analysis and comparison are made to verify the effectiveness and superiority of the proposed model. The results show that the RCMDE value lead to a larger difference between various states and the proposed model can achieve reliable and accurate fault diagnosis for a rolling bearing.


2019 ◽  
Vol 8 (2) ◽  
pp. 3242-3250

Moving component bearing is utilized to convey radial load and axial load or both just as. REB has nonlinear conduct make issue misalignment, surface waviness, fault happen at the inward race, external race, enclosure, ball or roller, so REB has a restricted life. Our concentration to evacuate fault diagnosis of bearing at the outer race has been investigating. For this purpose, REB vibration analysis is used. This paper present a support vector machine algorithm (SVM) approach with GA (Genetic algorithm) based optimization compare the result with SVM with cross-validation (CV) method along these lines, the information is processed correctly and an exact way. Time-domain Analysis, high pass and low pass filtering etc. used for feature extraction from vibration signal. Further, these feature extraction used as input to the SVM classifier. Support vector machine, a training given projected preparing information, the procedure yield perfect hyperplane. Feature extraction help to provides the actual condition of bearing. In this work, different signal processing techniques and process are used for fault diagnosis of bearing


Sign in / Sign up

Export Citation Format

Share Document