scholarly journals Study on Steady-State Responses of High-Speed Vehicle Using Infinite Long Track Model

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Wubin Cai ◽  
Maoru Chi

The coupled vehicle/track dynamic model is formulated through integrating a high-speed rail vehicle model with a slab track model via the wheel/rail contact model. The sliding window method is improved using the least square criterion to simulate the vehicle travelling along the infinite long track. The steady-state responses of a high-speed vehicle induced by the discrete sleepers and slab segments are investigated through numerical simulation and analysis of the experimental results. Also the validity of the coupled vehicle/track model is examined through comparing the simulation results with those acquired from field test measurements. The experimental and numerical results show that the wheel/rail contact forces fluctuate considerably as long as the sleeper passing frequency approaches the frequency of P2 resonance (wheelset and rail bouncing in phase on the slab). Increasing the damping of rail pads and primary suspension can lower the steady-state response amplitudes at the resonance region. The oscillations in the wheel/rail normal forces arising from the discrete slab segment excitation can be reduced by increasing the support stiffness of the CAM (cement asphalt mortar) layer under the slab.

2010 ◽  
Vol 26 (1) ◽  
pp. N9-N16
Author(s):  
C.-Y. Hu ◽  
K.-C. Chen ◽  
J.-S. Chen

AbstractThis study investigates the dynamic interactions between a vehicle and guideway of a high-speed ground transportation system based on maglev vehicles. The guideway is assumed to be made up of identical simply supported beams with single spans and rigid supports. The vehicle is considered to a two-dimensional vehicle model with primary and secondary suspensions. Three kinds of loading modes acting at each beam of guideway are first developed according to the locations of suspensions of vehicle. Coupled equations of motion of both vehicle and guideway in various loading modes are derived and solved by using numerical integration method. The simulations have been performed to investigate the parameters of vehicle/guideway system which may affect the steady-state responses of the vehicle and guideway.


2002 ◽  
Vol 13 (04) ◽  
pp. 205-224 ◽  
Author(s):  
Andrew Dimitrijevic ◽  
Sasha M. John ◽  
Patricia Van Roon ◽  
David W. Purcell ◽  
Julija Adamonis ◽  
...  

Multiple auditory steady-state responses were evoked by eight tonal stimuli (four per ear), with each stimulus simultaneously modulated in both amplitude and frequency. The modulation frequencies varied from 80 to 95 Hz and the carrier frequencies were 500, 1000, 2000, and 4000 Hz. For air conduction, the differences between physiologic thresholds for these mixed-modulation (MM) stimuli and behavioral thresholds for pure tones in 31 adult subjects with a sensorineural hearing impairment and 14 adult subjects with normal hearing were 14 ± 11, 5 ± 9, 5 ± 9, and 9 ± 10 dB (correlation coefficients .85, .94, .95, and .95) for the 500-, 1000-, 2000-, and 4000-Hz carrier frequencies, respectively. Similar results were obtained in subjects with simulated conductive hearing losses. Responses to stimuli presented through a forehead bone conductor showed physiologic-behavioral threshold differences of 22 ± 8, 14 ± 5, 5 ± 8, and 5 ± 10 dB for the 500-, 1000-, 2000-, and 4000-Hz carrier frequencies, respectively. These responses were attenuated by white noise presented concurrently through the bone conductor.


2001 ◽  
Vol 112 (3) ◽  
pp. 555-562 ◽  
Author(s):  
M.Sasha John ◽  
Andrew Dimitrijevic ◽  
Terence W Picton

2018 ◽  
Vol 39 (2) ◽  
pp. 260-268 ◽  
Author(s):  
Maaike Van Eeckhoutte ◽  
Robert Luke ◽  
Jan Wouters ◽  
Tom Francart

Sign in / Sign up

Export Citation Format

Share Document