scholarly journals Analyzing the Off-Grid Performance of the Hybrid Photovoltaic/Diesel Energy System for a Peripheral Village

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Ahmed I. M. Iskanderani ◽  
Ibrahim M. Mehedi ◽  
Makbul A. M. Ramli ◽  
Md. Rafiqul Islam

Grid extension from the distribution network is being used to meet the demand for rural electricity all over the world. Due to the extra cost of extending electric lines to rural villages, it is not feasible as the installing and commissioning costs are directly related to several constraints such as distance from the main grid, the land location, utilities to be used, and the size of the approximate load. Consequently, it becomes a challenge to apply technoeconomic strategies for rural electrification. Therefore, considering the above issues of rural electrification through grid power, the renewable energy system can be an attractive solution. This research analyzes different types of loads considering domestic, industrial, and agricultural requirements for a remote village in a developing country like Bangladesh. In this paper, four types of demand scenarios are developed considering the income level of inhabitants of the village. The investigation identifies the optimal scope for renewable energy-based electrification and provides a suitable technoeconomic analysis with the help of HOMER software. The obtained results show that a combined architecture containing solar panel, diesel generator, and battery power is a viable solution and economically beneficial. The optimal configuration suggested for the primary scenario consists of 25 kW diesel generators to fulfill the basic demand. The hybrid PV-diesel-battery system becomes the optimal solution while the demand restriction is removed for secondary, tertiary, and full-option scenarios. Commercial and productive loads are considered in the load profile for these three scenarios of supply. For the primary scenario of supply, the electricity cost remains high as $0.449/kWh. On the other hand, the lowest electricity cost ($0.30/kWh) is obtained for the secondary scenario. Although the suggested optimal PV-diesel-battery might not reduce the cost of electricity (COE) and NPC significantly, it is capable to reduce dependency on diesel utilization. Hence, the emission of carbon is reduced due to less utilization of diesel that helps to minimize the greenhouse effect on the environment.

2021 ◽  
Author(s):  
Enrico La Sorda ◽  
Francesco Pucci ◽  
Benjamin Mauries ◽  
Birgitte Storheim ◽  
Giorgio Arcangeletti

Abstract Reducing CO2 emissions is becoming one of the core targets for countries after the Paris agreement, which sets out a global framework to avoid dangerous climate change by limiting global warming to below 2°C and pursuing efforts to limit it to 1.5°C. To meet this objective also oil and gas operators have started to engage in an important effort to reduce the CO2 emissions in their plants and facilities. From this perspective Saipem developed its Wind2Sub, a Wind Power for Long Subsea Tie-Back (LSSTB) concept, where its own pendular floating foundation solution, namely Hexafloat, can host a wind turbine generator (WTG), all the utilities needed for subsea field development and operation (power distribution, chemical storage and injection, control system) and a back-up energy system to compensate the intermittent production due to wind persistence, currently a diesel generator (DG). The present paper will explore new solutions to ensure the continuity of the energy supply from Saipem Wins2Sub, based on green technologies. This may be done by collecting the generated surplus energy from a renewable energy system, in this case from WTG to a topside or subsea power storage. By adopting an Energy Storage System (ESS), it will be possible to use this energy when production from wind is low or null. This concept will replace the diesel generators, or any carbon fuel, so that the whole system will become green self-sustaining, as an energy island, without CO2 emissions. The activities performed during the concept development are articulated through the following steps: a selection of two typical oil field scenarios where Wind2Sub solution can be applicable; screening of the current technologies to store energy and a selection of those viable to the two selected scenarios; wind conditions and WTG power analysis with estimation of the amount of the energy to be stored; preliminary design of the ESS; preliminary cost estimation. The study was carried out by using a digital tool developed by Moss Maritime in the context of a Proof of Concept based on Floating energy storage. The tool allows to evaluate the feasibility of a solution through modellization of different renewable energy scenarios, demand profiles, simulation of operation, pre-sizing of the systems and cost estimation (LCOE, LCOS, LCOH). The ESS combined with Saipem Wind2Sub will be described more thoroughly in the present paper through the explanation of the results achieved within the case studies.


2017 ◽  
pp. 1438-1460 ◽  
Author(s):  
Vincent Anayochukwu Ani

Telecommunications industry requires efficient, reliable and cost-effective hybrid power system as alternative to the power supplied by diesel generator. This paper proposed an operational control algorithm that will be used to control and supervise the operations of PV/Wind-Diesel hybrid power generation system for GSM base station sites. The control algorithm was developed in such a way that it coordinates when power should be generated by renewable energy (PV panels and Wind turbine) and when it should be generated by diesel generator and is intended to maximize the use of renewable system while limiting the use of diesel generator. Diesel generator is allocated only when the demand cannot be met by the renewable energy sources including battery bank. The developed algorithm was used to study the operations of the hybrid PV/Wind-Diesel energy system. The control simulation shows that the developed algorithm reduces the operational hours of the diesel generator thereby reducing the running cost of the hybrid energy system as well as the pollutant emissions. With the data collected from the site, a detailed economic and environmental analysis was carried out using micro power optimization software homer. The study evaluates savings associated with conversion of the diesel powered system to a PV/Wind-Diesel hybrid power system.


2019 ◽  
Vol 9 (4) ◽  
pp. 405-422 ◽  
Author(s):  
Daming Xu ◽  
Tom Acker ◽  
Xuhui Zhang

Abstract This study was to find the optimal configuration for an independent renewable energy system for reverse osmosis (RO) desalination. The objective was to find the lowest levelized cost of energy (LCOE), with power reliability as the constraint. A genetic algorithm was used to solve the nonlinear integer programming program. A site with brackish groundwater in Arizona, USA was selected. The capacity of the RO system was 18.93 m3/d (5,000 gal/d), requiring a constant power consumption of 3.95 kW. Two scenarios were considered in terms of diesel generator (DG) allowed running time. The results showed that the optimal configuration was a hybrid photovoltaic/wind/diesel/battery system with 0.56 USD/kWh and the corresponding levelized cost of water 3.84 USD/m3, when the DG can run in any hour every day. The optimal solution was a hybrid wind/photovoltaic/battery system with 0.69 USD/kWh and 4.48 USD/m3, when the DG can run between 9 am and 9 pm every day for noise control. Both the two LCOWs were about half of the 7.9 USD/m3 currently paid by residents that live in the area. Sensitivity analyses showed the LCOE was fairly insensitive to photovoltaic panel tilt angle over a range for both the two configurations.


2017 ◽  
Vol 63 (No. 4) ◽  
pp. 168-171
Author(s):  
Perakis Christoforos ◽  
Kyriakarakos George ◽  
Hani Nabeel Bani ◽  
Hammad Shaker ◽  
Damasiotis Markos

Agriculture is the sector that consumes by far most water globally. Much research efforts aim at minimizing losses through the use of drip irrigation. Rural agricultural areas often do not have access to a main electrical grid to power the pumps needed for drip irrigation; it reduces the options in paying for a grid extension, getting a diesel generator or investing in an off-grid renewable energy system. In this paper, these alternatives are assessed technically and economically under real world conditions through the Jordan Valley case study. The results show that the autonomous photovoltaic (PV)-battery system is preferable to the use of a diesel generator, as well as it is preferable to the main grid extension in many cases depending on the cost of grid electricity and distance from the grid. For current subsidized grid electricity retail price to farmers, the PV-battery system becomes more attractive above a 300 m distance from the grid, while if the actual cost of electricity production in Jordan is taken into account, then it breaks even to 128 m. 


Sign in / Sign up

Export Citation Format

Share Document