scholarly journals Development and Validation of a Bordetella pertussis Whole-Genome Screening Strategy

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Ricardo da Silva Antunes ◽  
Lorenzo G. Quiambao ◽  
Aaron Sutherland ◽  
Ferran Soldevila ◽  
Sandeep Kumar Dhanda ◽  
...  

The immune response elicited by the protective whole-cell pertussis (wP) versus the less-protective acellular pertussis (aP) vaccine has been well characterized; however, important clinical problems remain unsolved, as the inability of the currently administered aP vaccine is resulting in the reemergence of clinical disease (i.e., whooping cough). Strong evidence has shown that original, childhood aP and wP priming vaccines provide a long-lasting imprint on the CD4+ T cells that impacts protective immunity. However, aP vaccination might prevent disease but not infection, which might also affect the breadth of responses to Bordetella pertussis (BP) antigens. Thus, characterizing and defining novel targets associated with T cell reactivity are of considerable interest. Here, we compare the T cell reactivity of original aP and wP priming for different antigens contained or not contained in the aP vaccine and define the basis of a full-scale genomic map of memory T cell reactivity to BP antigens in humans. Our data show that the original priming after birth with aP vaccines has higher T cell reactivity than originally expected against a variety of BP antigens and that the genome-wide mapping of BP using an ex vivo screening methodology is feasible, unbiased, and reproducible. This could provide invaluable knowledge towards the direction of a new and improved pertussis vaccine design.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Sebastian Carrasco Pro ◽  
John Sidney ◽  
Sinu Paul ◽  
Cecilia Lindestam Arlehamn ◽  
Daniela Weiskopf ◽  
...  

Accurate measurement of B and T cell responses is a valuable tool to study autoimmunity, allergies, immunity to pathogens, and host-pathogen interactions and assist in the design and evaluation of T cell vaccines and immunotherapies. In this context, it is desirable to elucidate a method to select validated reference sets of epitopes to allow detection of T and B cells. However, the ever-growing information contained in the Immune Epitope Database (IEDB) and the differences in quality and subjects studied between epitope assays make this task complicated. In this study, we develop a novel method to automatically select reference epitope sets according to a categorization system employed by the IEDB. From the sets generated, three epitope sets (EBV, mycobacteria and dengue) were experimentally validated by detection of T cell reactivityex vivofrom human donors. Furthermore, a web application that will potentially be implemented in the IEDB was created to allow users the capacity to generate customized epitope sets.


2020 ◽  
Vol 8 (2) ◽  
pp. e000761 ◽  
Author(s):  
Kim M van Pul ◽  
Ronald J C L M Vuylsteke ◽  
Monique T A de Beijer ◽  
Rieneke van de Ven ◽  
M Petrousjka van den Tol ◽  
...  

BackgroundWe previously showed selectively hampered activation of lymph node-resident (LNR) dendritic cell (DC) subsets in the breast cancer (BrC) sentinel lymph node (SLN) to precede a state of profound T cell anergy. Reactivating these DC subsets by intratumoral delivery of the Toll-like receptor-9 (TLR9) agonist CpG-B could potentially offer a promising immune therapeutic strategy to combat this immune suppression and prevent disease spread. Unfortunately, CpG-B can limit its own immune stimulatory activity through direct TLR9-mediated activation of signal transducer and activator of transcription 3 (STAT3), pinpointed as a key regulator of immune suppression in the tumor microenvironment. Here, we have investigated whether in vitro exposure to CpG-B, with or without simultaneous inhibition of STAT3 signaling, could overcome immune suppression in BrC SLN.MethodsImmune modulatory effects of CpG-B (CPG7909) with or without the JAK2/STAT3 inhibitor (STAT3i) AG490 were assessed in ex vivo cultured BrC SLN-derived single-cell suspensions (N=29). Multiparameter flow cytometric analyses were conducted for DC and T cell subset characterization and assessment of (intracellular) cytokine profiles. T cell reactivity against the BrC-associated antigen Mammaglobin-A was determined by means of interferon-γ ELISPOT assay.ResultsAlthough CpG-B alone induced activation of all DC subsets, combined inhibition of the JAK2/STAT3 pathway resulted in superior DC maturation (ie, increased CD83 expression), with most profound activation and maturation of LNR DC subsets. Furthermore, combined CpG-B and JAK2/STAT3 inhibition promoted Th1 skewing by counterbalancing the CpG-induced Th2/regulatory T cell response and significantly enhanced Mammaglobin-A specific T cell reactivity.ConclusionEx vivo immune modulation of the SLN by CpG-B and simultaneous JAK2/STAT3 inhibition can effectively overcome BrC-induced immune suppression by preferential activation of LNR DC, ultimately restoring type 1-mediated antitumor immunity, thereby securing a BrC-specific T cell response. These findings provide a clear rationale for clinical exploration of SLN-immune potentiation through local CpG/STAT3i administration in patients with BrC.


2021 ◽  
Author(s):  
Christopher D Greer ◽  
Coral M Kasden ◽  
Leon Morales ◽  
Kendall A Lundgreen ◽  
Philip D Hicks ◽  
...  

Prevention of COVID-19 is widely believed to depend on neutralization of SARS-CoV-2 by vaccine-induced humoral immunity, raising concern that emerging escape variants may perpetuate the pandemic. Here we show that a single intramuscular injection of Adeno-Associated Virus-6 (AAV6) or AAV9 encoding a modified, N-terminal domain deleted spike protein induces robust cellular immunity and provides long-term protection in k18-hACE2 transgenic mice from lethal SARS-CoV-2 challenge, associated weight loss and pneumonia independent of vaccine-induced neutralizing humoral immunity. In both mice and macaques, vaccine-induced cellular immunity results in the clearance of transduced muscle fibers coincident with macrophage and CD8+ cytotoxic T cell infiltration at the site of immunization. Additionally, mice demonstrate a strong Type-1 polarized cellular immunophenotype and equivalent ex vivo T cell reactivity to peptides of wt and alpha (B.1.1.7) variant spike. These studies demonstrate not only that AAV6 and AAV9 can function as effective vaccine platforms, but also that vaccines can provide long-term efficacy primarily through the induction of cellular immunity. The findings may provide an alternative approach to containment of the evolving COVID-19 pandemic and have broader implications for the development of variant-agnostic universal vaccines against a wider range of pathogens.


1995 ◽  
Vol 89 (s33) ◽  
pp. 14P-14P
Author(s):  
M Hawa ◽  
T Lohmann ◽  
M Londei ◽  
D Leslie

2013 ◽  
Vol 58 ◽  
pp. S143-S144
Author(s):  
J.R. Larrubia ◽  
M.U. Lokhande ◽  
S. García-Garzón ◽  
J. Miquel ◽  
A. González-Praetorious ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document